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Abstract
In this paper, we analyze the frequency correlation for a multiple-antenna system and compare

it with the conventional frequency correlation defined for a single antenna. The proposed frequency
correlation shows different behavior from that of the conventional one depending on an arrival angle
and an antenna spacing.
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1. Introduction
In a wireless communication channel, we have multipath propagation due to a large number of

reflected and diffracted waves. When the delay difference between multipath waves is not negligible,
we encounter frequency selective fading.

Thus far, a frequency correlation defined for a single receive antenna has been used for evalu-
ating the frequency selectivity [1, 2]. However, multiple antennas have been introduced to realize space
diversity and/or spatial filtering. The conventional frequency correlation cannot be used for multiple-
antenna systems. In this paper, we extend the frequency correlation to multiple-antenna systems.

2. Definition of Frequency Correlation in Multiple-Antenna System
Let us consider a multiple-antenna system with N elements as shown in Fig. 1. We ex-

press channels between transmit and receive antennas at frequency f as h1(f), h2(f), · · · , hN (f) and
weights for the receive antennas as w1, w2, · · · , wN . We define the vectors which consist of these as
follows:

h(f) = [h1(f) h2(f) · · · hN (f)]T (1)

w = [w1 w2 · · · wN ]T , (2)

where (·)T denotes transposition. From (1) (2), the channel at the array output is given by

y(f) =

N∑
i=1

wihi(f) = wTh(f). (3)

Using the conventional frequency correlation defined for a single antenna, we obtain

C(∆f) =
< y∗(f)y(f +∆f) >

< y∗(f)y(f) >
. (4)

Substituting (3) into (4), we obtain

C(∆f) =
< wHh∗(f) wTh(f +∆f) >

< wHh∗(f) wTh(f) >
. (5)

The above equation is the frequency correlation for a multiple-antenna system having weight vector w.
This is a natural extension of the conventional frequency correlation.



In this paper, we use maximum ratio combining (MRC) gains for the weights. Thus, we have

w = h∗(f). (6)

Then, substituting (6) into (5), we obtain

C(∆f) =
< hT (f)h∗(f)hH(f)h(f +∆f) >

< {hH(f)h(f)}2 >
. (7)

In the remainder of this paper, we consider C(∆f) given by (7) as the frequency correlation for a
multiple-antenna system.
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Figure 1: Multiple-antenna system configuration.
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Figure 2: Antenna arrangement.

3. Considerations on the Frequency Correlation
In this section, we consider the behavior of the frequency correlation defined above in specific

environments, and compare it with that for the conventional frequency correlation.

3.1. Two-Path Case
Here, we analyze the frequency correlation for a case where two multipath waves with equal

power arrive at a two-antenna array with antenna spacing As as shown in Fig. 2. The preceding wave
Path#0 and the delayed wave Path#1 arrive from θ0 and θ1, respectively. We express the delay dif-
ference between the multipath waves as τ . We assume that the phases of the waves are independent of
each other and uniformly distributed from −π to π.

In the following discussion, for the sake of simplicity, we consider the case of θ0 = 0◦. Then,
the frequency correlation defined by (7) is given by

C(∆f) =

1 + e−j2π∆fτ cos(πAs
λo

∆f
f sin θ1)

+1
2e

−j2π∆fτ cos(πAs
λo

sin θ1) cos(
πAs
λo

(1 + ∆f
f ) sin θ1) +

1
2 cos

2(πAs
λo

sin θ1)

2 + cos2(πAs
λo

sin θ1)
, (8)

where λ0 is the wavelength corresponding to the frequency f . If the arrival angle of Path#1 is also 0◦

(θ1 = 0◦), (8) becomes the following equation and coincides with the conventional frequency correla-
tion defined for a single antenna:

C(∆f) = e−jπ∆fτ cos(π∆fτ). (9)

Next, let us consider the case of |∆f/f | ≪ 1. Applying this to (8), we obtain

C(∆f) = e−jπ∆fτ cos(π∆fτ). (10)



The above equation is equal to the conventional frequency correlation for a single antenna under the
same condition. We can say that when |∆f/f | ≪ 1, the frequency correlation for the array is approxi-
mately equal to that for a single antenna.

Figures 3 and 4 show the amplitudes of the frequency correlations when the antenna spacing is a
half wavelength and 10 wavelengths, respectively, where the wavelength is the value at the frequency f
(2 GHz). The conventional frequency correlation for a single antenna is also shown in the figures. From
these figures, it is seen that when the antenna spacing is small (a half wavelength), all the curves are
coincident. That is, the frequency correlation does not depend on the arrival angle θ1, and it is the same
as the conventional frequency correlation for a single antenna. In contrast, when the antenna spacing
is large, dependence on the arrival angle θ1 is apparent and we see that these frequency correlations
differ from the conventional frequency correlation. However, in the case of θ1 = 0◦ or |∆f/f | ≪ 1, it
coincides with the conventional correlation despite the antenna spacing as discussed above.
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Figure 3: Frequency correlation in 2-path case
where As is a half wavelength.
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Figure 4: Frequency correlation in 2-path case
where As is 10 wavelengths.

3.2. Exponential Delay Profile Case
In this subsection, we numerically investigate the frequency correlation in exponential delay

profile cases. Table 1 shows the simulation parameters. We assume that 16 multipaths arrive at each
antenna and the average power of each path decays successively by 1 dB. The antenna arrangement is
the same as that shown in Fig. 2. In the case where the arrival angles θ0, θ1, · · · , θ15 measured from the
x-axis are specified, each multipath experiences independent Rayleigh fading. As for the Jakes’ model,
we assume 13 scatterers around the array.

Figures 5 and 6 show the amplitudes of the frequency correlations for the two-element array
defined by (7) for the antenna spacing of a half wavelength and 10 wavelengths, respectively. Here, the
delay spread στ is 100 ns. The conventional frequency correlation for a single antenna is also shown in
the figures.

From Fig. 5, it is seen that when the antenna spacing is small (a half wavelength), dependence
on the arrival angle is very small and all the frequency correlations almost coincide with the conven-
tional one. In this simulation, we assumed 16 multipaths with a time spacing of 23.04 ns. Then, the
frequency correlation has a periodicity of 43.4 MHz. However, when the antenna spacing is large, the
dependence on the arrival angle is seen as shown in Fig. 6, and the frequency correlations for the array
differ from the conventional one. Moreover, this dependence is significant when ∆f is large. In the
case of the Jakes’ model where the arrival angles distribute uniformly, the frequency correlation has the
value between those for the cases of arrival angles of 30◦ and 90◦.



Table 1: Simulation parameters
Number of received antennas N = 2

Antenna spacing Half wavelength, 10 wavelengths (at frequency f )

Frequency f = 2.0 GHz

Delay spread στ = 100 ns

Propagation model 16 multipaths with average power decaying successively by 1 dB

Arrival angles of multipaths

θ0 = θ1 = · · · = θ15 = 0◦

θ0 = θ1 = · · · = θ15 = 30◦

θ0 = θ1 = · · · = θ15 = 90◦

Jakes’ model
Number of trials 100,000
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Figure 5: Frequency correlation in exponential
delay profile case where As is a half wavelength.
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Figure 6: Frequency correlation in exponential
delay profile case where As is 10 wavelengths.

4. Conclusions
In this paper, we have introduced the frequency correlation for a multiple-antenna system.

Using the definition, we have shown the numerical examples for the two-wave case and the exponential
delay profile case. It has been clarified that the frequency correlation for a small array has the same
values as those of the conventional one for a single antenna and is independent of the arrival angles.
However, as for a large array, it has been shown that the frequency correlation is different from the
conventional one depending on the arrival angles.
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