
ALIEN Project - Abstraction Layer for
Implementation of Extensions in programmable

Networks

Grzegorz Danilewicz, Marcin Dziuba, Janusz Kleban,
Marek Michalski, Remigiusz Rajewski, Mariusz Żal

Poznan University of Technology
Chair of Communication and Computer Networks

Polanka 3, 60-965 Poznan, Poland
e-mail: {grzegorz.danilewicz, marcin.dziuba,

janusz.kleban, marek.michalski, remigiusz.rajewski,
mariusz.zal}@put.poznan.pl

Bartosz Belter, Artur Binczewski, Krzysztof Dombek,
Artur Juszczyk, Łukasz Ogrodowczyk, Iwo Olszewski,

Damian Parniewicz, Maciej Stroiński
Poznan Supercomputing and Networking Center

Network Technologies Department
Poznan, Poland

e-mail: {bartosz.belter, artur, kdombek, juszczyk, lukaszog,
iwo, damianp, stroins}@man.poznan.pl

Abstract—This paper presents motivation and goals of the
ALIEN - EU FP7 project. The main goal of the project is to pro-
vide an experimentally verified OpenFlow Hardware Abstraction
Layer (HAL) for controlling the forwarding behavior of non-
OpenFlow capable hardware. The general idea of HAL and its im-
plementation in non-OpenFlow capable hardware are presented.
The performance of HAL implementation will be tested using
OFELIA experimental infrastructure, especially, the OFELIA
Control Framework. Proposed solution will extend OpenFlow
functionality on different kind of programmable devices, which
will be used in SDN network.

I. INTRODUCTION

ALIEN (Abstraction Layer for Implementation of Exten-
sions in programmable Networks) project has started at 1st
October 2012 and will be finished at 30 September 2014.
It is the FP7 STREP (Specific Targeted Research Project),
multipartner research project. The consortium consists of:
Poznan Supercomputing and Networking Center (PSNC) -
Poland; Center for Research and Telecommunication Exper-
imentation for Networked Communities (CREATE-NET) -
Italy; European Center for Information and Communication
Technologies GmbH (EICT) - Germany; DELL France SA
(FORCE) - France; Poznan University of Technology (PUT)
- Poland, University College London (UCL) - UK; University
of Bristol (UNIVBRIS) - UK, and University of the Basque
Country (UPV/EHU) - Spain.

The main objective of the ALIEN project is related to
Software Defined Networking (SDN) [1] and the OpenFlow
protocol. The SDN is an idea of network which allows network
administrators or operators to flexibly manage network devices
like routers or switches using software running on special
dedicated to this purpose external servers. The main idea
of this solution is to separate the control plane/layer from
the packet forwarding plane/layer [2], [3]. The control plane
is realized as a ”network operating system” (more simply
”network OS”) which manages the entire current network state
just from one central point in such a network. OpenFlow is an
open standard which allows centralized way of programming
flow tables in heterogeneous switches and routers [4], [5].

Such tables include flow entries with actions to determine
instructions for routing and packet processing e.g. actions
decide how packets should be modified and which packet
should be send through which port. This idea allows to
manage flow tables (adding, removing or editing table entries
to switches or routers) via a central controller. Strong point
of this solution is that researchers can experiment with a new
kind of flows not interfering with existing ones. It makes also
easiest to test a new kind of routing and switching protocols.
Of course, OpenFlow is not the only one method supporting
the SDN concept. Cisco introduced its own SDN idea called
Cisco ONE [6], [7]. This solution, unlike OpenFlow, allows
to program layers in the network both above and below the
data and control plane/layer [1]. Another solution for SDN –
as an alternative to OpenFlow and Cisco ONE – is ForCES
introduced by IETF [4], [8], [9], [10], [11], [12], [13], [14],
and [15].

The ALIEN project aims at delivering innovative network
abstraction layer to connect non-OpenFlow capable equip-
ment (called also by us as ”alien hardware”) to OpenFlow
environment. It can be achieved by providing the Hardware
Abstraction Layer (HAL) for non-OpenFlow capable network
devices. Significant effort has been allocated to the specifica-
tion of the HAL architecture that will be common for different
hardware platforms considered in the project. Implementation
of the HAL elements in these non-OpenFlow capable hardware
platforms will allow to connect them to the OFELIA European
OpenFlow test-bed and manage as standard OpenFlow switch.
”Alien hardware” is any type of network device that does not
support natively an OpenFlow. It could be:

• packet switching equipment: traditional L2 packet
switches without OpenFlow support;

• non-packet switching equipment: optical switches,
EPON devices, etc.;

• packet processing and monitoring equipment: FPGA
cards, network processors;

• CATV equipment: HFC modems etc.

The following equipment is considered in the ALIEN
project: NetFPGA cards, EZChip NP-3 network processors (in
EZappliance platform), Cavium OCTEON Plus AMC network
processor (module in an ATCA systems and DELL switch),
optical switches, GEPON OLT and ONU units, and DOCSIS
hardware. All this hardware is not yet OpenFlow capable.

The main project objectives are as follows:

• To define HAL enabling non-OpenFlow capable hard-
ware to be controlled by the OpenFlow protocol. This
layer must facilitate unified integration of alien types
of network hardware elements with usage of hardware
description language and common interfaces that can
facilitate uniform representation of any type of alien
hardware and their capabilities.

• To implement the proposed HAL layer using a se-
lected list of network equipment. The modular soft-
ware design should be applied for the HAL imple-
mentation in order to allow the separation of the
evolution of the OpenFlow management endpoint (a
common part for all hardware platforms) and hardware
specific drivers which communicate with the network
equipment.

• To integrate HAL controlled devices into the OFE-
LIA facility. The integration approach should take
into account the requirements coming from current
OFELIA CF architecture as well as capabilities of
alien hardware.

• To test proposed solutions in experiments performed
within the OFELIA test-bed. The experiments should
allow to validate and demonstrate the usage of alien
hardware controlled via the HAL. Each experiment
should be performed with a network slice managed
within the OFELIA Control Framework. The experi-
ments will focus on the Content-Centric Networking
(CCN) usage scenarios.

• To disseminate and publish project results across re-
lated research and standardization forums. High visi-
bility of the project should be ensured as well as the
cooperation and integration with other international
projects related to Software-Defined Networking and
Future Internet architectures should be achieved.

The paper is organized as follows: Section II presents
main ideas of OpenFlow standard, Section III describes HAL
architecture, and Section IV discusses basics of HAL imple-
mentation. Section V is devoted to presentation of OFELIA
Control Framework. The paper is concluded in Section VI.

II. OPENFLOW STANDARD

OpenFlow is an open standard supporting communications
interface defined between the control and forwarding planes
of the SDN architecture. The OpenFlow ecosystem consists
of routers, switches, virtual switches, and access points. The
main idea of the OpenFlow is to give access to and facilitate
manipulation of the forwarding plane of network devices. It
provides an open interface to control how data packets are
forwarded through the network, and a set of management
abstractions used to control topology changes and packet

filtering. The behavior of network devices may be modified
through a well-defined ”forwarding instruction set”. In this
case network control may be moved out of the networking
nodes to logically centralized control software. The OpenFlow
protocol specifies a set of instructions that can be used by
an external application to program the forwarding plane of
network devices.

Currently, OpenFlow is implemented by major vendors in
commercial switches, routers and wireless access points to
allow researchers to run experimental routing protocols for
example in campus networks without needing to reconfigure
the internal workings of network devices. Now, users can
control how traffic flows through a network defining flows
and determining what path those flows take through a network,
regardless of the underlying hardware. The OpenFlow standard
may be used for applications such as virtual machine mobility,
high-security networks and next generation IP based mobile
networks [16].

OpenFlow consists of three parts (see Fig. 1) [4]:

• Flow Tables installed on switches. The switch is in-
formed how to process the flow by an action associated
with each flow entry.

• A Controller, which uses the OpenFlow protocol to
communicate with switches to impose policies on
flows. The OpenFlow protocol provides an open and
standard way for the controller to communicate with
switches and allows entries in the flow table to be
defined externally. Flows are transmitted through the
network on paths predefined using the controller and
enforced by switches.

• A Secure Channel that connects the remote controller
(remote control process) to switches and allows secure
communication between them. The SSL protocol may
be used to securely send commands and packets
from the controller to switches using the OpenFlow
protocol.

The OpenFlow architecture separates data path and control
path functions. The data path functions are still implemented
on the switch, while routing decisions are moved to the
controller, which is a standard server. This solution is dif-
ferent from a classical router or switch, where a data and
control planes occur in the same device. Now, the controller

Fig. 1: Main components of the OpenFlow switch

Fig. 2: The architecture of an OpenFlow switch

communicates via the OpenFlow protocol with switches using
such messages as packet-received, send-packet-out, modify-
forwarding-table, and get-stats. The data plane is based on the
flow table, where each entry contains a set of packet fields
to match, and an action e.g. send-out-port, modify-field, drop.
If there is no matching flow entry for a received packet the
OpenFlow switch sends this packet to the controller, which,
in turn, decides how to handle the packet. The packet may
be dropped or a flow entry may be added to the flow table to
inform the switch how to forward similar packets in the future.

The main components of an OpenFlow switch are shown
in Fig. 2 [17]. It consists of one or more flow tables and an
OpenFlow channel to an external controller. The flow tables
are used to manage flows and perform packet lookups, and
forwarding. The OpenFlow channel is used by the controller
to manage the switch via the OpenFlow protocol. Using this
communication channel the controller can add, update, and
delete flow entries in flow tables. Each flow table contains
a set of flow entries with match fields, counters, and a set
of instructions to apply to matching packets. Matching starts
at the first flow table and continues to additional flow tables
until a matching entry is found. In the case of matching, the
instructions associated with the matching entry are executed.
If no match is found in the flow table the packet may be
forwarded to the controller over the OpenFlow channel, may
be dropped or may continue to the next flow table. Actions
performed on packets and pipeline processing are defined by
a set of instructions associated with each flow entry. Packet
forwarding, packet modification and group table processing are
described by actions. Pipeline processing instructions define
how subsequent tables process packets and what kind of
information, in the form of metadata, is sent between tables.
If a next table is not specified by the instruction set associated
with a matching flow entry the table pipeline processing stops
and the actions in the pre-defined action set of the packet are
executed.

Packets may be forwarded to a physical or logical port.
The logical port may be defined by the switch or by the
OpenFlow switch specification. Ports defined by the OpenFlow
switch specification are called reserved ports. These ports
may specify generic forwarding actions such as: sending to
the controller, flooding, or forwarding using non-OpenFlow

methods. The switch-defined logical ports may specify link
aggregation groups, tunnels or loopback interfaces.

Additional processing is specified by a group table. The
group table consists of group entries and represents sets of
actions for flooding, as well as more complex forwarding
semantics (e.g. multipath, fast reroute, and link aggregation).
Each group entry contains a list of actions buckets with specific
semantics dependent on group type. The actions in one or more
action buckets are applied to packets sent to the group. The
detailed information about each component of the OpenFlow
switch as well as the OpenFlow protocol may be found in [17].

III. HARDWARE ABSTRACTION LAYER ARCHITECTURE

Hardware Abstraction Layer provides an abstracted version
of hardware, for different types of network devices, to make
the device compatible with OpenFlow protocol. To do that,
it decouples hardware-specific control and management logic
from the network-node abstraction logic (i.e. OpenFlow). De-
coupling in the HAL hides the device complexity as well as
technology and vendor specific features from the Control Plane
logic. The decoupling is done by splitting the HAL (see Fig. 3)
into two layers: 1) Cross-Hardware Platform Layer which is in
charge of node abstraction, virtualization and communication
mechanisms and 2) Hardware Specific Layer which is in
fact a collection of the hardware specific software modules,
collectively called driver, responsible for discovering hardware
platform resources and configuring network devices. These
two layers are connected to each other with two interfaces, 1)
Abstract Forwarding API as an interface to communicate with
hardware driver, and 2) Hardware Pipeline API for hardware
platforms that use the OpenFlow datapath implementation
provided by Cross-Hardware Platform Layer.

The gradual and modular abstraction in the HAL archi-
tecture gives the possibility of changing and extending any
platform without compromising the whole HAL architecture. It
also makes HAL’s implementations easier for similar network
platforms by module reusability in common components (i.e.
OpenFlow pipeline implementation).

Node Virtualization
Management

Network Control

Translation

Network Device(s)

Device specific interfaces

H
ar

d
w

ar
e

 A
b

st
ra

ct
io

n
 L

ay
e

r

Orchestration Discovery

Hardware Specific Layer

Cross-Hardware Platform Layer

OpenFlow Virtualization

Network
Management

Abstract Forwarding API
Hardware Pipeline API

OpenFlow protocol

Fig. 3: The HAL architecture

The Cross-Hardware Platform Layer is shared layer be-
tween all different platforms and composed of independent
modules dealing with device or system management, mon-
itoring and control plane (OpenFlow). On the management
side, this layer presents a unified abstraction of the physical
platform (fundamentally physical ports, virtual ports, tunnels,
etc.) to plugin modules. The plugin modules can steer the
configuration of the OpenFlow endpoints, for instance, defining
the OpenFlow controller. Examples of plugin modules are
NetConf/OFConfig agent or a file-based configuration reader
on management section and Virtualization Agent (VA) on
virtualization section.

The Virtualization Agent (VA) is a HAL’s internal module
which aims at providing a distributed slicing mechanism
for the ALIEN devices. Like other virtualization approaches
([FlowVisor] and [VeRTIGO]), the VA’s main objective is to
allow multiple parallel experiments to be executed on the same
physical substrate without interfering each other. The VA has
been designed with the following goals: (i) avoid Single Point
of Failures (SPoF) through a distributed slicing architecture,
(ii) provide an OpenFlow version agnostic slicing mechanism
and (iii) minimize the latency overhead caused by the slicing
operations.

The idea behind the Hardware Specific Layer is to deal with
diversity of the network platforms and their communication
protocols to overcome the complexity of implementing Open-
Flow protocol on different hardware. In the real world, every
network equipment or platform has its own protocol or API
for communicating, controlling and managing the underlying
system. In the proposed HAL, the Hardware Specific Layer
is responsible to hide the complexity and heterogeneity of
underlying hardware control for message handling and provide
a unified and feature rich interface in its northbound for the
upper layer i.e. Cross-Hardware Platform Layer. Although
the Hardware Specific Layer on its northbound has a unified
interface, on the southbound, it is in direct contact with the
underlying hardware, which makes it dependent to the hard-
ware in terms of communicating protocol and programming
language. This results the layer to have different implemen-
tation method for each platform. Following the modularity
principle and also in order to make the HAL flexible enough
to support different hardware platform, different modules in
Hardware Specific Layer take care of supporting hardware
platforms heterogeneity. The layer has been designed in a
way that the changes inside its modules do not affect the
upper layer (hardware independent) functionality and in most
cases there is no need to manipulate the architecture. In the
following the modules inside the Hardware Specific Layer and
their functionalities are explained.

DISCOVERY MODULE - In order to initialize Cross-
Hardware Platform Layer, a set of information about network
device(s) must be provided from Hardware Specific Layer. The
information needed are: (i) a list of devices working together
as a single hardware platform instance and controlled by a
single OpenFlow agent instance. For each device, the access
information is also required. (ii) a list of all network ports and
their characteristics (e.g. transmission technology, transmission
speed, operational status, etc.) from every device. (iii) the
internal hardware platform topology (e.g. how all devices
within a hardware platform instance are interconnected) must

be recognized. This is required for orchestration functionality
to work properly in Hardware Specific Part (HSP) in HAL.
There are various design options to implement discovery
functionality. The discovery can be manual (e.g. platform
administrator creates static configuration files containing some
part of required information and HSP loads that configuration
file during initialization) or automatic (e.q. Hardware Specific
Layer queries each device for all information and reacts to
new notifications coming from the device) or combination of
both approaches. Depending on the implementation and also
the platform, the discovery process could be active just only
during Hardware Specific Layer initialization or executed con-
tinuously (e.g. periodical queries in order to discover changes
in the hardware).

ORCHESTRATION MODULE - In some cases, the hard-
ware platform is composed of multiple hardware components
acting independently but controlled centrally (e.g. DOCSIS,
GEPON). The orchestration procedure goal is to send config-
uration commands to all hardware components that must be
engaged in the request handling in a synchronized, ordered
and atomic fashion. The orchestration process must identify
if coming request from Cross-Hardware Platform layer was
successfully applied to all hardware components. Also, the
orchestration process should be able to recover from config-
uration failures on a single hardware component and restore
initial state of all the hardware components. The orchestration
process is initialized by a request (e.g. Add-flow method of
AFA interface) from Cross-hardware Platform interface.

TRANSLATION MODULE - The Translator module in
Hardware Specific Layer is responsible for the translation
of data and action models used in Cross-Hardware Plat-
form Interfaces (mostly OpenFlow-based) to device’s protocol
syntax and semantics and vice versa. Translator acts as a
middleware between OpenFlow switch model and underlying
physical device. Due to heterogeneity of the network devices,
translation specification and implementation is different for
each network device. Generally the module is responsible
for translating all port numbering, flow entries and packet
related actions from OpenFlow switch model into platform
specific interface commands and processor instructions or
configuration modifications D3.2. In most cases of hardware
platforms, the translation functionality will be stateful and
requires storing of information about all handled OpenFlow
entries and its translation to specific device commands. It
allows to modify or delete a device’s applied re-configuration
which strictly refers to a given flow entry.

IV. HARDWARE ABSTRACTION LAYER IMPLEMENTATION

The main components of HAL implementation for ALIEN
harware platforms are shown in Fig. 4. In the ALIEN
project, xDPd/ROFL (eXtensible DataPath Daemon/Revised
OpenFlow Library) libraries [18], [19], [20] are used as a
reference HAL concept implementation and the framework for
creating OpenFlow agents communicating with different types
of hardware platforms.

The ROFL library is a set of modules to build both Open-
Flow data paths and controllers. On one hand, the controller
(”rofl-common”) part of the library includes a full C/C++
OpenFlow v1.0, v1.2 and v1.3.2 endpoint to be embedded

Dell Split Data
Plane switch

EZappliance NP-3 ATCA with Octeon ADVA DWDM NetFPGA DOCSIS GEPON

OpenFlow agent OpenFlow agent

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

Hardware
Driver

… …

Abstract Forwarding API

OpenFlow

Pipeline Hardware API

OpenFlow pipeline OpenFlow pipeline

(close-box platforms)

(programmable platforms)

ROFL/xDPd framework
for implementing hardware drivers

Fig. 4: The implementation of HAL for ALIEN hardware
platforms using xDPd/ROFL framework

both in data path elements as well as in controllers, including
hierarchical (like FlowVisor) or recursive controllers. On the
other hand, the ROFL library includes two main libraries for
building data path elements, the Abstract Forwarding API
(”rofl-afa”) and the Pipeline (”rofl-pipeline”) sub-libraries. The
Abstract Forwarding API (AFA) is a set of header files which
define a hardware agnostic API for heterogeneous forwarding
engine management. ROFL-pipeline in its turn, is a complete
OpenFlow engine and forwarding data model, for OpenFlow
versions v1.0, v1.2 and v1.3.2. The ”rofl-afa” library currently
uses ”rofl-pipeline” as its data model.

The xDPd is a multi-platform OpenFlow data path element,
build using ROFL libraries. The architecture of xDPd is made
of basically three components:

• The Control and Management Module in charge of the
common control part of the logical switches (Open-
Flow endpoint) and the management;

• The AFA interface of HAL, which abstracts the details
of the underlying platform via the hardware agnostic
C interface;

• The forwarding modules (also known as drivers) for
the specific platform, which fulfills the AFA interface.

A. AFA Interface

Abstract Forwarding API (AFA) is binding the platform
specific, forwarding module with control and management
module, which is keeping the abstracted switching information.
AFA interface provide below features:

• Management actions: allow for creating and destruct-
ing logical switches within the forwarding module (a
”driver”). It binds the logical switch instance and ports
or network interfaces.

• Configuration actions: passing OpenFlow requests to
the forwarding module (e.g.: flow tables entry addi-
tion, flow statistics query, etc.).

• Notification of events : Passing events generated by the
forwarding module to CMM module (e.g.: port status
changes, OpenFlow packet-in and other OpenFlow
messages and errors).

B. Hardware Specific Parts

A northbound bridge of HPL is defined by AFA interface,
its behavior and functionality. It connects HPL and CMM. It
defines logically and functionally rules on this interface. They
are platform independent. Their assumptions come from Open-
Flow specification. They will be realized by ”alien hardware”.
As it was mentioned earlier, there are considered different
platforms. They have some similarities, but deep details of their
nature are fundamentally different. Hence, the code realizing
AFA interface for each of them will be very specific for
each platform. This part of software we called a Hardware
Specific Parts (HSP). Each partner responsible for particular
platform will prepare software and hardware modules for the
platform which is responsible for. It can be said that HSP is a
southbound bridge of HPL, it is a part of HAL, it implements
functionality of platform specific driver.

V. OFELIA CONTROL FRAMEWORK

As part of SDN activities the ALIEN project will extend
the OFELIA Control Framework. OFELIA is a FP7 project
aiming towards creation of an OpenFlow test facility allowing
researchers from academia as well as industry to develop new
control protocols in controlled networking environments on
dedicated OpenFlow enabled carrier-ready hardware devices.
ALIEN will extend OFELIA Control Framework and its ar-
chitecture to support abstraction of network information of
equipment that is alien to the OpenFlow technology.

The current OFELIA experimental facility is oriented to
enable the experimentation with OpenFlow at European level.
Therefore, the OpenFlow infrastructure is exposed to the
researchers in order to test novel networking approaches. Basi-
cally, OFELIA is a shared facility with two types of resources:
Virtual Machines (VMs) based on Xen and OpenFlow enabled
switches. The researchers apply for both types of resources and
obtain computational capacity at VMs and a control interface
to the networking elements. In a nutshell, OFELIA allows
researchers to not only experiment on a test network but to
control the network itself.

OpenFlow (OF) has evolved quickly in the last years with
several different versions (v1.0, optical extensions v0.3, v1.1,
v1.2, v1.3, and the last version v1.3.1) in a short period
of time, which in fact are incompatible between them. This
situation causes some chaos and has been very demanding
for vendors, developers and researchers. Currently, the most
widely deployed and implemented version of OpenFlow (both
by vendors and open source community) is OFv1.0. This is
the reason why OFELIA has deployed OpenFlow version 1.0
(OFELIA started on October 2011).

As an experimental facility, OFELIA needs to share its
resources between several experiments and researchers. The
OFELIA Control Framework (OCF) is in charge of the man-
agement of the whole testbed and its resources. The OCF also
manages the life-cycle of the experiments and which resources
are assigned to them. As previously mentioned, there are two
types of resources to be shared: VMs and OpenFlow switches.
On the one hand, the sharing of computational resources is
a well-known technique with several commercial and open
source products in widespread use. The virtualization software
used by OFELIA is Xen. The OFELIA project has developed a

mechanism to integrate the management of the VMs under the
OCF. On the other hand, the sharing of OpenFlow switches is
based on FlowVisor, which is a special OpenFlow Controller
that acts as a transparent proxy between the resource (i.e. the
switch) and multiple Controllers. The FlowVisor is an external
entity, which is able to delegate parts of the flowspace of the
switch to different Controllers and isolate the control plane
associated with each part. Therefore, the FlowVisor allows
the slicing and virtualization of the switches, enabling the
sharing of OpenFlow switches between several experiments
at the same time. OFELIA has defined the VLAN tag as
the mechanism to enforce the isolation, that is, the field to
isolate the flowspace between experiments. FlowVisor inspects
the OpenFlow protocol to enforce the isolation between ex-
periments, and consequently, it depends on the OpenFlow
version. Currently, FlowVisor only supports OpenFlow version
1.0. This means that OFELIA only allows sharing OFv1.0
resources due to its tight relation with FlowVisor.

VI. CONCLUSIONS

The achievements of the ALIEN project will have a large
impact on research and commercial world. As a result, non-
OpenFlow devices will be connected to the OFELIA infrastruc-
ture (OpenFlow network) creating an unique heterogeneous
environment for testing protocols as well as control and
management mechanisms. The research concerning the three
components seems to be crucial for SDN deployment models.
Three such models were proposed till now:

• switch based – SDN controller can send messages
directly to the data plane implemented in network
equipment;

• overlay network (tunnel based overlay approach) –
hypervisor environment is implemented in a data
source and end host; the SDN controller sends control
messages directly to the SDN hypervisor switches;

• and hybrid (a combination of the switch based and
overlay models) – this approach can be used to gradu-
ally migrate existing equipment to a new switch based
model.

It is very likely that the hybrid model will be used by
companies to evolutionary transform existing networks to
SDN networks. Furthermore, in transition period they will
require non-SDN equipment to communicate with SDN-native
equipment. To perform this migration smoothly it is necessary
to use a Hardware Abstraction Layer (HAL), which can help
to force the non-SDN equipment to be controlled by the SDN
controller. The Hardware Abstraction Layer for applying the
OpenFlow protocol to the non-OpenFlow hardware which will
be proposed by the ALIEN project seems to be a good solution
of this problem. The ready-to-use software enabling selected
non-OpenFlow devices to communicate with OpenFlow con-
troller within OFELIA infrastructure will be an outcome of the
ALIEN project.

In the heterogeneous environment consisted of non-
OpenFlow and OpenFlow equipment it is possible to do a
research on SDN network control and management issues,
traffic control, scalability, security, etc. The results of ALIEN
project will show that HAL allows to use non-OpenFlow
equipment in the OpenFlow environment. The impact of the

ALIEN project achievements to commercial world lies mainly
in application of the HAL functionalities and extensions of
OpenFlow protocol to selected non-OpenFlow devices. This
will show that it is possible to extend OpenFlow functionality
on different kind of programmable devices, and transition to
the SDN network does not mean that all network equipment
has to be new and SDN-native. The software produced by the
ALIEN project may be used to connect selected devices to the
OpenFlow network.

VII. ACKNOWLEDGMENTS
The work described in this paper was financed from the EU-FP7 ALIEN project

which is partially funded by the European Commission under grant agreement no. 317880.

REFERENCES

[1] D. Dineley, Software-defined networking, 2012, [Online]
http://www.infoworld.com/t/networking/
software-defined-networking-206740

[2] K. Greene, MIT Technology Review, 2009, [Online]
http://www.technologyreview.com/biotech/22120/

[3] B. Heller, N. McKeown B. Lantz, A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks, pp. 19:1-19:6, New York,
NY, USA, 2010.

[4] T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, J. Turner N. McKeown, OpenFlow: Enabling Innovation
in Campus Networks, in ACM SIGCOM Computer Communication
Review, vol. 38, pp. 69-74, April 2008.

[5] OpenFlow Switch Consortium, OpenFlow version
1.1.0 Switch Specification, February 2011, [Online]
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

[6] Cisco Open Network Environment (ONE), [Online]
http://newsroom.cisco.com/cisco one

[7] Cisco Open Network Environment, [Online]
http://www.cisco.com/web/solutions/trends/
open network environment/index.html

[8] R. Dantu, T. Anderson, R. Gopal L. Yang, Forwarding and Control
Element Separation (ForCES) Framework, RFC3746, April 2004.

[9] J. Hadi Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal,
J. Halpern A. Doria, Forwarding and Control Element Separation
(ForCES) Protocol Specification, RFC5810, March 2010.

[10] K. Ogawa J. Hadi Salim, SCTP-Based Transport Mapping Layer (TML)
for the Forwarding and Control Element Separation (ForCES) Protocol,
RFC5811, March 2010.

[11] J. Hadi Salim J. Halpern, Forwarding and Control Element Separation
(ForCES) Forwarding Element Model, RFC5812, March 2010.

[12] R. Haas, Forwarding and Control Element Separation (ForCES) MIB,
RFC5813, March 2010.

[13] H. Khosravi, A. Doria, X. Wang, K. Ogawa A. Crouch, Forwarding
and Control Element Separation (ForCES) Applicability Statement,
RFC6041, October 2010.

[14] K. Ogawa, W. Wang, J. Hadi Salim E. Haleplidis, Implementation
Report for Forwarding and Control Element Separation (ForCES),
RFC6053, November 2010.

[15] O. Koufopavlou, S. Denazis E. Haleplidis, Forwarding and Control
Element Separation (ForCES) Implementation Experience, RFC6369,
September 2011.

[16] Open Networking Foundation: Into to OpenFlow, [Online]
http://www.opennetworking.org/standards/into-to-openflow

[17] Open Networking Foundation, OpenFlow Switch Specification, Septem-
ber 2012.

[18] xDPd, [Online] https://www.codebasin.net/redmine/projects/xdpd/
wiki/Architecture

[19] M. Suñé, A. Köpsel, V. Alvarez, T. Jungel, xDPd: eXtensible DataPath
Daemon, EWSDN, Berlin, Germany, 2013.

[20] ROFL, [Online] https://www.codebasin.net/redmine/projects/
rofl-core/wiki/Wiki?version=12

