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Abstract—We study the problem of output regulation
for a class of nonlinear systems subject to matched input
disturbances, with the disturbance signal generated by an
autonomous dynamical system. Using the Koopman op-
erator, the problem is reformulated as bilinear output reg-
ulation. We show that a controller, inspired by the linear
output regulation problem, is effective in disturbance rejec-
tion and achieving local asymptotic stability.

1. Introduction

The output regulation [6, 7] is a well-known control the-
ory problem with applications in control of various dynam-
ical systems, e.g. [9]. Output regulation for linear systems
has been well studied in the literature [6, 7], necessary and
sufficient conditions for regulating the output have been
formulated. For nonlinear systems, solving the regulatory
equations is challenging. In the literature, control designs,
also using the internal-model principle, have been proposed
for certain classes of systems [7, 10]. In this work, we study
matched input disturbance rejection in Koopman frame-
work. We show that using the Koopman operator [1, 5, 3],
the nonlinear output regulation problem is reduced to a bi-
linear problem. Our results show that a controller, inspired
by the linear output regulation problem, is effective in dis-
turbance rejection and achieving local asymptotic stability.
In what follows, we first present the problem and give a bi-
linear system representation using the Koopman operator.
Thereafter, a controller is proposed and the main result is
presented [11]. Finally, the work is concluded.

2. Problem formulation

Consider a nonlinear system of the form

ẋ = f (x) + g(x)(u + v), e = h(x), (1)

with x ∈ X ⊆ Rn, u, v ∈ R and f : X 7→ X, g : X 7→ X,
h : X 7→ Rl nonlinear functions. The disturbance signal v
is generated by the linear exosystem

ẇ = S w, v = Ew (2)

where w ∈ W ⊆ Rr, and S is a skew-symmetric matrix. The
goal is to find a controller u that asymptotically achieves

regulation, that is, limt→∞ e → 0. Based on the results in
[5, 2], we deduce the following Lemma [11].

Lemma 1 Assume that system (1) admits a set D of ob-
servable functions ψ, with N = dim(D), that satisfies the
following properties:

• if u, v = 0 and ψ ∈ D then ψ̇ ∈ span(D),

• if ψ ∈ D then ∂ψ
∂xi

gi ∈ span(D),

• hi ∈ span(D); ψ(x) = xi ∈ span(D).

Then, system (1) is equivalently described by

ż = Az + B(u + v) + Nz(u + v), e = Cz, (3)

where z = Ψ(x).

Now, consider a linear dynamic error feedback controller
(plus state feedback) of the form

ξ̇ = Fξ + Ge, u = Hξ + Kz, (4a)

with ξ ∈ Ξ ⊆ Rr. Define

s =

[
ξ − w

z

]
, Ñ =

[
0 0
0 N

]
, K̃ =

[
0 K

]
, H̃ =

[
H 0

]
,

the closed loop dynamics then follows

ṡ = Acs + Ñ sK̃s + Ñ sH̃s, (5)

where Ac =

[
S GC
−BE A + BK

]
.

Proposition 1 Consider the system given by (1) and (2),
mapped to system (3) using Lemma 1, with the controller
in (4) satisfying the internal model principle, F = S , H =

−E. Choose the matrix K such that A + BK is Hurwitz and
G such that Ac is Hurwitz. If ∃ε > 0, 0 4 W = WT ∈

R(N+r)×(N+r), such thatWAT
c + AcW + εÑWÑT W

[
H K

]T[
H K

]
W −εI

 ≺ 0, (6)

is satisfied, then the output is regulated provided that[
ξ0 − w0

z0

]
= s0 ∈ E = {s ∈ Ξ × Z | sT W−1s ≤ 1}. (7)

The proof builds upon a combination of techniques in-
cluding the internal model principle, Petersen’s Lemma,
and quadratic Lyapunov functions [8, 11].
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3. Conclusion

This works has shown the utilization of the Koopman
operator to achieve output regulation of a nonlinear systems
experiencing matched input disturbances.
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