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Abstract—Practical networks of biological systems are
often driven by various unknown forces, some are varying
fast (like white noise) and some other have the same time s-
cale as the network dynamics (like slow- varying signal). It
turns to be very difficult to depict the interaction structures
of networks by the observable node-variable data only, as
both noise and signal are unknown while both play impor-
tant roles in producing the variable data. In this paper we
present an effective method to overcome this difficulty. We
show (i) how to recognize the influences from unknown
noise and signal; (ii) how to separate these influences from
different driving sources based on the recognition; and (i-
ii) how to correctly infer the networks structures based on
the understandings of (i) and (ii). Numerical results fully
justify our theoretical analysis

1. Introduction

In the present world huge data have been accumulated,
and day by day the data size increases exponentially. All
these data have become a useful source available for public.
It has turned to be a key issue in almost all fields of natural
and social fields how to extract useful information for the
database. In biological systems, data are often produced
by dynamic networks [1, 2], among which neural networks
[3, 4] and gene regulatory networks [5, 6] are most typi-
cal ones. The network structures which yield these data are
however often unknown. Understanding these structures is
crucial for understanding and controlling various biolog-
ical functions. This paper focuses on the problem of in-
ferring network structures by analyzing measurable data of
network outputs, i.e. the so-called inverse problem [7, 8].

2. Model and task of network depiction

The dynamics of networks can be generally represented
, around certain local phase space point, by a set of linearly
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coupled ordinary differential equations

() = Az@®+T0)+ S0 (1)
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where A is N x N matrix with constant elements, which
is the target for solving the inverse problem. The network
dynamics is often driven by various unknown and compli-
catedly distributed forces. Some driving forces may vary
very fast (often from the sources of microscopic world). we
represent these impacts as white noise I'(¢), approximated
as

<T@t >=0,<TOTI({)>= Q6 —1) (2a)

<T(x"(t)>=0forall 7 >t (2b)

Eq.(2b) is crucial property for fast varying noise. Some
other driving (often from the sources of macroscopic
world) may vary much slower (like impacts by breaths and
heart beats and so on). We represent them as signal S(¢).
The typical property of the slow impacts can be approxi-
mated as

0<|SH-St-AD| <1, for0<Ar< 1 3)

N
IS = 1S(OI/N
i=1

Now the task of the inverse problem reads: With al-
1 x;(¥),i = 1,---,N being known, we aim at depict all
elements of matrix A under the conditions that both I'(¢)
and S(7) are unknown, apart the generally understandable
properties of Eq.(2a) and Eq.(3). By known observables
we mean a set of discrete x(f) data measured with certain
frequency

x(ty);k=1,2,--- ,L; ry1 —tr = A, At < 1 4)
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3. Decorrelation of fast varying noise

At the first glimpse, Eq.(1) is unsolvable since I'(#;) and
S(#) may be random and the number of unknown quan-
tities T'(ty), S(t), k = 1,2,--- ,L, and A;;,i,j = 1,--- ,N
are more than the number of available equations with the
known discrete variables x(#;). Possibility to overcome
the difficulty is to make various statistical computations,
of which correlation computation is the most popular algo-
rithm [9, 10, 11]. Multiplying the both sides of Eq.(1) by
2’ (t;), and computing the corresponding correlations we
obtain a matrix equation

B=AC+1+S 3)
with
1 L-1
B = < :i?;l:T >= m ; j-’(tk)wT(tk)
1 L
C = <zxl>= 7 Z x(t)z! (1)
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, Z(tk+1) — (ty)

x(t) = A (6)
From formula Eq.(6), itis clear that I'(;) with #x,1 > #; > 1
contribute to the velocity computation which is not corre-
lated bo the variables x(#;) for f; < t; due to the fast-vary
property of Eq.(2b). This leads to decorrelation of fast-vary

noise [11] as

=0 (7
and we achieve A o
B=AC+S
from which A can be solved as
A=B-8C"! ®)

If the network is driven by white-noise only, we have
[11]

S$=0, A=BC"! 9)
In Fig.(1) we show the depiction of a dynamic network
driven purely by fast-varying noise, and find that formula
(9) works very well for the network inference.

However, if the slow-varing signals do not vanish, Eq.(9)
dose no longer work. In Fig.2 we give two examples of
slow-varying signal, one is colored noise with long corre-
lation time (Fig.2(a)), and the other quasiperiodic signal
(Fig.2(b)). In both cases the formula (9) fails to correctly
depict the network structure (Fig.3). If we, however, know
signal S(#) and can accordingly compute signal-correlation
matrix S, the full algorithm (8) can perfectly depict the
network structure, as shown in Fig.4.
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Figure 1: Trajectory of dynamical network under the in-
vestigation in a two-variable plane, driven by fast-varying
noise only and the application of Eq.(9) in this case. Ma-
trix A for the network is given as follows: positive inter-
actions A(p);; is randomly chose within (1.0,2.0) , nega-
tive interactions A(n);; within (-2.0,-1.0) , diagonal en-
tries A; = —8. Nodes number N = 200 and mean de-
gree < K >= 20 for the system. Qij = 0;0;; with
o € (0.005,0.015) for white noises. (a) The trajectory of
the system in the x; — x, subspace. (b) Bé’gl v.s. actual

~

A;j. It is clearly verified that Eq.(9) works very well for
network inference in such case.
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Figure 2: Examples of different kinds of slow-varying sig-
nal. (a) Time series of colored noises with long correlation
time. (b) Time series for quasiperiodic signals.
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4. Decorrelation of slow varying signals

Nevertheless, the computation of Eq.(8) is often not pos-
sible in practice, for the slow-vary signal is unknown and
its correlation matrix S is not computable. One can include
Eq.(3), the only property of S(f), in the inference compu-
tation.

Initiated by Eq.(3) we can derive a set of increment e-
quations from Eq.(3)

Az = AAz + AT + AS (10)
with

Ax(ty) = x(try1) — ()
AS = S([k+1) - S(lk) <1

Ax(ty) = T(tge1) — (1),
AT =T(,,) - L),

Multiplying the both sides of Eq.(10) again by = (#;) we
have

AB = AAC + AT + AS (11)
with AT = 0 for the fast-noise decorrelation due to Eq.(2b)
and AS ~ 0 with the slow-varying property of S(¢) Eq.(3),
we can further reduce Eq.(10) to

AB = ANC

leading to

A =ABAC™! (12)

The final form of increment correlation matrices suc-
cessfully decorrelate both unknown fast and slow vary-
ing unknown impacts and give a closed (approximated, of
course) formula for successful network inference. In Fig.5
we show the inference results by applying Eq.(11) to the
systems of Fig.2, which are very good. Unlike the almost
totally wrong results of Fig.3, Fig.5 provide satisfactorily
good network depiction. Moreover, unlike the restrict re-
quirement of Fig.4 for the price of correct depiction, known
slow-varying signal correlation S, the results of Fig.5 are
achieved with these slow impacts (i.e. I and S) totally un-
known. We hope that the method in this paper may be used
in practice to solve inverse problems of dynamic networks,
in particular, to inferring neural networks.
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Figure 3: Direct applications of Eq.(9) to the system (1)
driven by white noises and slow-varying signals at the same
time. The network and statistical properties for the white
noises is the same as in Fig.(1). (a) (BC’")U v.s. actual
A;;j for the case of colored noises with long correlation time
(signal Fig.2(a)). (b) (BC™");; v.s. actual A;; for the case
quasiperiodic signal (signal Fig.2(b)). In both case Eq.(9)
fails to depict the network structure correctly.
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Figure 4: Depicting the network structure by Eq.(8) given
signal S(f) and signal-correlation matrix S. The systems is
the same as in Fig.(3). (a) [(B — S’)C’"]ij v.s. actual A,-j
for the case of colored noises with long correlation time.
(b) [(E — 5’)@"1],7 v.s. actual Aij for the case quasiperi-
odic signal. In both case Eq.(8) works perfectly well.
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Figure 5: Numerical verification of Eq.(12) in the dynami-
cal systems driven by both unknown fast-varying noise and
slow-varying signals. The systems is adopted as in Fig.(3).
(a) [ABAC"];; v.s. actual A;; for the case of colored
noises with long correlation time. (b) [ABAC"I]U V.S.
actual A; ; for the case of quasiperiodic signal.Though there
is no any information about the signal S(¢) (which is re-
quired for producing Fig.4), Eq.(12) depicts network struc-
ture very well in both cases.
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