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Abstract – In 2013, study on flickering wheel illusion 

by R. Sokoliuk and R. VanRullen claimed that the 

illusion’s flickering frequency corresponds to that of alpha 

wave which is particularly prevalent in human brain’s 

visual cortex. This paper investigates the theoretical 

counterpart of the claim by modelling the orientation 

sensitive neural network with continuous attractor neural 

network (CANN) model. CANN is known for its 

capability of producing rich dynamics and incorporating 

the effects of global inhibition and short-term synaptic 

depression. Therefore, the illusory effect was modelled 

and studied by tuning the parameters of the two effects 

and the radial periodicity of the image stimuli. The study 

revealed the radial periodicity of the image can invoke 

various types of illusion other than flickering, and such 

additional effects were also generated by the simulation, 

and studied based on the modified actual images and 

virtual image inputs. 

 

1. Introduction 

1.1. Flickering Wheel Illusion 

Recent study [1] on an optical illusion called ‘flickering 

wheel illusion’ reported that brain’s sampling behavior of 

optical input causes the illusion of a static wheel-shaped 

image flicker at a rate significantly resembling that of 

occipital alpha rhythm (8 ~ 13 Hz) . (Figure 1: to 

experience the illusion, focus on the left dot, or any other 

point to locate the wheel in the peripheral vision.)  

Subjects in the psychophysical experiment were asked 

to match the flickering frequency of the stimulus with 

reference controlled animation. The number of spokes in 

the wheel, degree of contrast between spoke and empty 

space were varied, and subjects’ brain activity was 

recorded by EEG at the same time. The distribution of 

estimated frequency was peaked at 9Hz, and flickering 

intensity was highest when the wheel had 32 spokes and 

with maximum contrast of black and white. 

The occipital alpha rhythm is one of various neural 

oscillations in human brain. The rhythm has been widely 

studied using the electroencephalography, and studies of 

[2] and [3] show that the rhythm closely interacts with the 

visual information processing. More specifically, it has 

been shown that the visual attention consists of periodic 

sampling which is synchronous to the occipital alpha 

rhythm. Furthermore, there could be other various forms 

of illusion due to the radial periodicity of the image. For 

instance, by staring into the center of figure 2, it is 

Figure 1 Figure 2 
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possible to perceive the sense of rotation within the gray 

slabs.  

Normally, there lies a mechanism in the brain that 

naturally fades away the sampling periodicity from our 

perception. Otherwise, the entire world would be 

flickering in our vision. Interestingly, it turns out that the 

flickering optical illusion occurs when the mechanism 

fails to operate for certain types of visual input that shows 

radial periodicity like figure 1.  

 

1.2. Neural Dynamics 

Neural networks are simulated with one-dimensional 

continuous attractor neural network structure, adopted by 

[4].  The model incorporates the dynamics of 256 neurons 

in a ring structure so that each of the neuron responds to 

an orientation, or a spoke in the image, making the neuron 

orientation-sensitive.  

First, the dynamics of the synaptic input to a particular 

neuron is provided by equation below.  

    (1)  

The synaptic input is controlled by three factors. The 

first term on the right hand side is the external input. The 

second is the total input from all other neurons in the 

network, or the ring (256-regular polygon) in this 

particular problem setting. The third term is neuron’s own 

relaxation. On the left hand side, τs is the time constant 

typically of 1ms order.  is the linear neural density on the 

ring, and J(x, x’) represents the interaction constant 

between a pair of neurons at location x and x’, which is 

set to be proportional to the value of normal distribution 

computed at x-x’.  (x-x’ is the circular distance.) 

 
(2) 

p(x’, t) in (1) is a variable that indicates the availability of 

nearby resources needed to send neural signal or a spike, 

with respect to the neuron at x’. The phenomenon when 

the lack of such resources limit neural outputs is called 

short-term synaptic depression (STD), when molecules 

like ATP (Adenosine Triphosphate) or neurotransmitter 

are depleted around location x’ due to frequent signaling. 

The value of p is between 1 and 0, and its dynamics is 

expressed by equation (3). 

 
(3) 

 is the time scale of neurotransmitter recovery, which 

is chosen to be 50 .   is the variable that controls the 

degree of synaptic depression, and this is set to be one of 

independent variables in the later experiments.  

Finally, r(x’,t) in (1) and (3)  is the firing rate of the 

neuron at x’, which is determined by equation (4) below. 

               (4) 

The equation (4) indicates that the output of a neuron is 

determined by the squared synaptic input divided by a 

term to incorporate the concept of global inhibition. 

Unlike short-term depression that affects small region of 

only a few neurons, global inhibition controls larger 

portion of neural network’s activity in order to preserve 

resources for other distant networks’ tasks. The degree of 

global inhibition is controlled by k and , with the logic 

that denser neural network are more severely inhibited by 

global inhibition. 

Particularly for simulation of this problem, the 

integration is replaced by summation over 256 neurons, 

and the J(x, x’) is appropriately modified to fit the circular 

structure. (1st neuron and 256th neuron must be close.)  

 

2. Experiment Setting 

As mentioned above, the 256 neurons are assumed to 

be the orientation-sensitive neurons that correspond to an 

angle. In order to generate the effect of figure 1, the 

spatial input for the 256 neurons were set to be the bit 

string of [1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 … 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0] multiplied by an amplitude constant A, 

where each bit corresponds to one of the 256 neuron.  

The input of the spokes in the wheel is periodically 

provided, or steadily flickered at 10Hz in the earlier 

experiments, and then added with jitter (temporal noise) to 

better simulate the noisy environment of human brain’s 

sampling behavior of alpha-wave from 8Hz to 10Hz. 

Therefore, in this experiment, instead of providing non-

flickering steady input to generate flickering illusion from 

the retina to visual cortex, it focuses on how the sampled 

input creates further impact. This is due to the result of [1] 

that the flickering illusion remains prevalent in the 

afterimage, where there is no additional physical input in 

the retina. In other words, sample information was 

deemed sufficient to analyze the effect, and thus used as a 

direct input in our experiments. 

Furthermore, the amplitude constant A, global 

inhibition constant k, short-term synaptic depression 

constant  are scaled to the range that produced 

significantly diverse dynamics in a similar setting from 

the result of [5]. 

 

3. Experiment Result 

3.1. Observed Dynamics 
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There were several distinct patterns derived from the 

model. Below graphs show the spatiotemporal 

information of firing rate of 256 neurons. X-axis 

represents the time-axis, and Y-axis the neuron 

identification index. Note that 256th neuron and 1st neuron 

are actually neighboring with each other in the ring 

structure. 

Rotating bump (3 seconds)  

 
Spike (3 seconds) 

 
Mixed (3 seconds) 

 
(Asynchronous) Homogeneous Spike (3 seconds) 

 
Silent (Synchronous Spike) (3 seconds) 

 

Figure 1 

3.2. Impact of Parameters 

Amplitude A was set to be 0.8, 1.0, and 1.2. k and beta 

was tested at ranges of 0.01, 0.02, … 0.05 (small scale) 

and 0.05, 0.15, … 0.75 (large scale). The table below 

summarizes the result during the first 3 seconds of 

simulation at amplitude 0.8, varying k and beta values in 

large scale. During the duration, state transitions occur, 

and the state in the end has been recorded.  

 
Table 1. Summary of States 

Repeated experiments on amplitude 1.0 and 1.2 showed 

minor difference. The summary certainly shows a trend, 

but additional information other than the summary 

required experiments of longer duration. 

 

3.3. Experiments with Longer Duration 

At some parameter setting, 3-second duration was not 

enough to view the convergence of the state, and longer-

duration experiments presented better results. Results 

below present 10-second duration result, at amplitude A = 

0.8, k = 0.15, and beta varying from 0.05 to 0.75. 

 
(1) Beta = 0.05: Rotating bump 

 
(2) Beta = 0.15: Rotating bump, faster 

(3) Beta = 0.25: Mixed 
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(4) Beta = 0.35: Mixed, spikes moving slower 

(5) Beta = 0.45: Mixed, spikes moving even 

slower, providing sense of continuity 

 

(6) Beta = 0.55: Spikes, occasionally moving 

(7) Beta = 0.65: Spikes, staying steady 

(8) Beta = 0.75: Spikes, staying steady 

The above set of images clearly shows the impact of 

increasing beta value, or the degree of synaptic 

depression. First, larger beta slows down the state 

evolution. State evolution usually proceeds in an order of 

‘homogeneous spike’, ‘spike’, and then to ‘mixed’ or 

‘rotating bump’. It is possible to see that the period of 

initial homogeneous spike state is getting longer and 

longer as beta value increases. Second, larger beta 

makes the rotating bump faster. Third, larger beta 

restricts the spatial movement of spikes. Intuitively, 

these two effects can be metaphorically understood by 

considering the neural ring as a rope with its tension 

related with beta and height of its differential component 

related with the firing rate. Since stronger tension makes 

the pulse on the rope move faster by making the up and 

down components of the pulse shape more elastic. This 

explains the second effect, and the third effect can be 

partially explained by that high beta value strongly 

restricts the neurons nearby the ones that recently formed 

spike, making the only possible neuron position for the 

next spike be the exactly opposite side of the previous 

spike.  

The effect of varying global inhibition can be studied 

from table 1 and another observation that larger k makes 

the rotating bump slower. While the table 1 suggests 

that k and beta might affect the system in an equivalent 

manner, the observation emphasizes its oppositeness from 

beta. Again, metaphorically, setting a larger k is 

comparable to putting the ring into a more viscous liquid. 

In that sense, the global inhibition (k) and short-term 

synaptic depression (beta) have distinct role in supporting 

the neural network dynamics, especially in that one 

influences globally, while the other influences locally 
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