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Abstract—The dynamics of single-layer continuous at-
tractor neural networks (CANNs) model has gained exten-
sive attention. We generalize the neural network model to a
two-layer structure based on the original features, and take
feedback and feedforward effects into consideration. We
apply a static stimulus on one layer and a moving stimulus
on the other layer. Under various strengths of the feed-
back and feedforward couplings, the two-layer network
will show distinct behaviors. Under a relatively weak input
in the first layer, when the feedback is inhibitory, the net-
work dynamics displays kinks. The kinks will also behave
differently with distinct inhibitory strengths. When both
the feedback and feedforward couplings are excitatory, the
activities in the two layers will attract each other. There-
fore, a stronger moving stimulus is required to drag both
layers to move simultaneously. We also consider the ef-
fect of inhibitory or excitatory in both layers in turn, which
leads to some opposite behaviors.

1. Introduction

Our brain always performs computations following the
rules determined by the structure of the network and the in-
puts. In simulation studies, people have built many kinds
of neural network models to illustrate different functions
and properties of the brain. In our study, we choose the
CANN model to be the topic due to its property of trans-
lational invariance of neuronal interactions, with which the
network is able to hold a continuous family of stationary
states. The structure endows the model with the capacity
to track a moving stimulus continuously, which is intuitive
and practical for studying the functions of the brain. In this
model, we can mimic visual, auditory or vestibular signals
(stimuli) with Gaussian functions, and apply static or mov-
ing stimuli to the single layer network model to observe the
responses.

There have already been extensive studies about the
CANN model, and many properties of the model have been
revealed

[1–5]
. In particular, the tracking dynamics of the

CANN model is an important aspect and has been studied
theoretically

[1]
. However, most of these studies were based

on a single layer structure, namely, there is only one kind
of neuron population producing responses. What we intend
to realize is to generalize the CANN model to a two-layer

structure and take feedback and feedforward couplings be-
tween the two layers into consideration. Under this struc-
ture, not only will there be interactions between the neu-
rons in each layer, but also between the neurons in two dif-
ferent layers. The structure seems to be more complicated
but the functions and the dynamics of the network will be
improved and enhanced. With this model, we can study
two different kinds of neuron populations and two different
kinds of inputs, and this design achieves the combination
of the visual and auditory signals.

2. Dynamics of The Network

2.1. Two-layer CANN Model

Zhang et al.
[4]

studied the dynamics of the two-layer
CANN model. They considered one input to the first layer
of the network. They found that positive feedbacks reduce
the mobility of the network state while negative feedbacks
enhance the mobility of the network state. In our study, we
take both feedback and feedforward couplings into consid-
eration and study the dynamics of the network.

Now we first consider a one-dimensional continuous
stimulus x, which can be regarded as the direction of the
movement, or the orientation, and so forth. We deal with
networks whose neuronal interaction range is much less
than the network range, so here we define the range to be
(-∞,∞).

We use the function U(x, t) to denote the synaptic input
to neurons at time t whose preferred stimulus is x, and use
the function r(x, t) to denote their firing rates. The firing
rate increases with the synaptic input but cannot be an infi-
nite quantity, so here we introduce a variable called global
inhibition to make the firing rate saturate at some stage.
The form of firing rate has been given

[3]
as:

r(x, t) =
[U(x, t)]2

+

1 + kρ
∫ ∞
−∞

dx′[U(x′, t)]2
+

, (1)

in which [U]+ ≡ max(U, 0), ρ is neural density, and k is the
global inhibition, a small, positive constant.

The dynamics of the synaptic input U(x, t) is determined
by external input Iext(x, t), the network input from other
neurons, and its own relaxation. The dynamical equations
are:
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τ
∂U1(x, t)

∂t
= I1ext(x, t) + ρ

∫ ∞
−∞

dx′J11(x, x′)r1(x′, t) +

ρ

∫ ∞
−∞

dx′J f b(x, x′)r2(x′, t) − U1(x, t),

τ
∂U2(x, t)

∂t
= I2ext(x, t) + ρ

∫ ∞
−∞

dx′J22(x, x′)r2(x′, t) +

ρ

∫ ∞
−∞

dx′J f f (x, x′)r1(x′, t) − U2(x, t). (2)

Here τ is a time constant, typically of the order of 1 ms
[1]

,
which controls the rate at which the synaptic input relaxes
to the total input of the neuron. J11(J22)(x, x′) is the neural
interaction between x and x′ in the first (second) layers. J f b

(coupling from the second layer to the first layer) and J f f

(coupling from the first layer to the second layer) denote
the feedback and feedforward couplings, respectively.

As for the interaction terms J(x, x′), we choose Gaus-
sian function with a range a, which keeps the translational
invariance,

Ji(x, x′) =
Ji0
√

2πa
exp
[
−

(x − x′)2

2a2

]
, (3)

in which Ji0 = J0 for i = 11 and 22, and Ji0 = W f f and W f b

for i = f f and f b, respectively.
For the external input Iext(x, t), we define the input as a

Gaussian function with width a.

2.2. Moving Stimulus

We study the case in which the input 1 is static while the
input 2 is moving. Since the dynamics of the network can
be complicated under some parameter settings, we study
the dynamics in terms of the firing rate, average velocity
and variance with respect to the stimuli.

2.2.1. The Firing Rate

When the input 1 is weak while the input 2 is a strong
one, we record the behaviours of the network.

As shown in Fig. 1 to 2, we get some interesting results.
The white (dashed) lines indicate the trajectory of the stim-
ulus. We use a weak input 1 with magnitude of 0.3, and a
strong input 2 of 0.8. Meanwhile, the velocity of input 2 is
0.01, a small value. Under this setting we may expect that
the input 2 is likely to dominate the network dynamics due
to the large magnitude difference. The number of neurons
is 200. Global inhibition k is 0.7, and the range a of the
Gaussian function is 0.5.

In Fig. 1, when the feedback and feedforward are both
excitatory, the pattern shows that the firing rate in first layer
will follow the second layer, although the stimulus in the
first layer is static. For Fig. 2, when the feedback effect
from second layer to first layer is inhibitory, we can see
the bump in first layer is suppressed periodically. When

the stimulus 2 is approaching the same position as stimulus
1 (π), the bump in first layer will be suppressed, and in
turn when the stimulus 2 is away from the position of the
input 1, a small bump can hold for a while. Opposite to the
Fig. 2, Fig. 3 has an inhibitory feedforward effect, but with
the support of the strong input 2, the second layer is little
influenced by this effect, and the first layer is still excited
and follows the input 2.

Figure 1 The firing rate
patterns under slow mov-
ing stimuli.
W f b = 0.1,W f f = 0.1.

Figure 2 The firing rate
patterns under slow mov-
ing stimuli.
W f b = −0.1,W f f = 0.1.

Figure 3 The firing rate patterns under slow moving stimuli.
W f b = 0.1,W f f = −0.1.

There is another situation in which the velocity of input
2 can be faster. Here we pick one of these cases where v2 =

0.05. We use the same parameter sets except the change of
the velocity of input 2.

Figure 4 The firing rate patterns under fast moving stimuli.
W f b = 0.1,W f f = 0.1.

Fig. 4 shows the firing rate patterns under a static stimu-
lus in the first layer and a fast moving stimulus in the sec-
ond layer. Both the feedback and feedforward couplings
are excitatory. The dynamics of the network is very special.
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Since the velocity of input 2 is fast, the bump in second
layer cannot track the input so the dynamics looks like ‘os-
cillating’. Because of the attraction between the two layers,
the first layer is also ‘oscillating’.

We also record the dynamics under a strong static input
1 and a strong moving input 2.

As shown in Fig. 5 to 7, the velocity of input 2 is 0.01,
and the magnitude of the input 1 is increased to 0.7. The
strength of input 2 is still 0.8. The number of neurons is
200, and the global inhibition k is 0.7. The initial condition
of U(x, t) is 0, and the range a of the Gaussian function is
0.5.

Figure 5 The firing rate
patterns under strong in-
put 1.
W f b = 0.1,W f f = 0.1.

Figure 6 The firing rate
patterns under strong in-
put 1.
W f b = −0.1,W f f = 0.1.

Figure 7 The firing rate patterns under strong input 1.
W f b = 0.1,W f f = −0.1.

It is natural to get the conclusion that when the strength
of input 1 increases, the first layer will not be easily
dragged by the second layer any more. Instead, the dy-
namics in the first layer will impact dramatically on the
behaviours of the second layer. In Fig. 5, the first layer
moves around the input position, which indicates that al-
though the first layer is attracted by the second layer, it
generally still follows its own stimulus due to the strong in-
put 1. When the feedback becomes inhibitory, the second
layer is affected by the first layer. The second layer in Fig.
6 displays small ‘kinks’ near the position of π (correspond-
ing to input 1 position), which results from the attraction
from the first layer to the second layer. In Fig. 7, the repul-
siveness from first layer to the second layer arises. In the
second layer, when the bump is around the same position
as the input 1, its firing rate diminishes.

2.2.2. The Average Velocity

Now we take a look at the dynamics of the second layer
under various magnitudes and velocities of the input 2. In
order to get a summary figure, we calculate the average ve-
locity of the responding moving bump in the second layer
under each parameter set. We fix the magnitude of input 1
on 0.7, and other parameters are kept unchanged.

Figure 8 Average velocity of the moving bump in the sec-
ond layer under various magnitudes and velocities of the
input 2. W f b = 0.1,W f f = 0.1.

Figure 9 Average velocity of the moving bump in the sec-
ond layer under various magnitudes and velocities of the
input 2. W f b = 0.1,W f f = −0.1.

Figure 10 Average velocity of the moving bump in the sec-
ond layer under various magnitudes and velocities of the
input 2. W f b = −0.1,W f f = 0.1.

Figure 8, 9 and 10 show the average velocity of the mov-
ing bump in the second layer under various magnitudes and
velocities of the input 2. We use 3000 τs as the time scale,
and the magnitude of input 1 is 0.7. We find that there ex-
ist a boundary in each average velocity figure. Above the
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boundary is the ‘depinned’ region in which the average ve-
locity is not 0 while below the boundary is the ‘pinned’
region in which the average velocity is 0 or approximately
to 0. The ‘depinned’ region indicates that the response is
a moving bump and the displacement and average veloc-
ity are non-zero. However, the ‘pinned’ region suggests
that the second layer will not move far away from its initial
position, namely it tracks the input 1 so the displacement is
very small even equals to 0, which leads to 0 average veloc-
ity. In particular, there exist a ‘silent states’ region in Fig.
9, in which the response in the second layer is suppressed
completely due to the inhibitory feedforward coupling.

When the strength of input 2 is weak, no matter whether
the couplings between the two layers are excitatory or in-
hibitory, the average velocity of the second layer is always
about 0, which indicates that the bump of the second layer
is ‘oscillating’ around the corresponding position of the in-
put 1 (π). This is because the stimulus strength is not strong
enough to overcome the attraction coming from the first
layer, so that the second layer activity will be closer to the
first layer activity instead of tracking the moving stimulus.
On the other hand, when the moving velocity of the input
2 is too fast, the responding bump will not be able to track
the stimulus, which corresponds to the ‘pinned’ region.

2.2.3. The Variance

A good method to evaluate whether the second layer is
tracking the input 1 or input 2 is to calculate the variance
of the difference between the bump position and the input
position.

We denote the bump position as a function dependent of
time: x(t), and the stimulus input positions are v1 · t and v2
· t, respectively. So the variance of the two layers are:

σ2
1 = 〈(x2(t) − v1 · t)2〉time − 〈x2(t) − v1 · t〉2time

σ2
2 = 〈(x2(t) − v2 · t)2〉time − 〈x2(t) − v2 · t〉2time, (4)

where the angular brackets denote the average value over
time. If the value of the variance is larger, the tracking
performance is worse.

Figure 11 The phase diagram of tracking performance of
second layer for three cases of couplings.

We plot the phase diagram as shown in Fig. 11. As the
strength of input 2 increases, the second layer will track
the moving stimulus. As for the region below the curve, it
indicates that the bump in the second layer is tracking the
input 1, which results from a weak or a fast input 2. When
the strength of input 2 is not strong enough or the moving
velocity of input 2 is too fast, the second layer cannot hold a
static response under the inhibitory feedforward coupling.
For inhibitory feedforward couplings, the phase boundary
is spurious when both the velocity and magnitude of the
input 2 are very small (the magnitude is about 0-0.4, the
velocity is about 0-0.3), but this is an artifact due to the
weak response.

3. Conclusion

According to what we have studied, when the magni-
tudes of the two inputs are comparable, there exist a com-
petition between the inputs. Meanwhile, the couplings be-
tween the two layers are also important for the two layers
to determine which input to track.

On the other hand, in the presence of a weak input 1 and
a strong input 2, the network is shown to be more sensi-
tive to the inhibitory feedback coupling than the inhibitory
feedforward coupling.

Different kinds of couplings will lead to different dynam-
ics of the network. In the average velocity studies, there is
a sharp transition from the pinned to depinned region when
the moving stimulus is sufficiently strong or slow. Further-
more, the inhibitory feedforward coupling gives rise to a
special ‘silent region’, which is different from other two
coupling forms. This also can be found in the study of the
variance (Fig. 11).
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