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Abstract—Semantic relation classification can be con-

sidered as a multiclass classification problem. Richer and

higher quality feature sets lead to better performance when

using traditional features. This tendency also increases the

dimensions of the feature space, resulting in an increased

processing time, and leads to lower classification accuracy

when using nonlinear classifiers. We introduce an approach

to build features for relation classification consisting of

only low-dimensional vectors representing substrings be-

tween two words, called substring vectors. In this paper on

substring vectors, we survey the relationship between the

numbers of dimensions and the obtained accuracies when

nonlinear classifiers are applied. Through experimental

results, we found that our approach using relatively low-

dimensional representations achieves a sufficiently high ac-

curacy that is better than most existing approaches. Fur-

thermore, we utilize autoencoders for reconstruction and

decrease the number of dimensions; finally, we obtain bet-

ter classification results than before.

1. Introduction

In the past few years, relation classification has attracted

considerable research interest. It has widely served an im-

portant role in many applications such as machine transla-

tion. Although many approaches have been explored for

relation classification, the most representative and general

one is that of supervised classification, which has been

shown to be reliable and yields good classification results

in most cases [5][2]. These methods use a set of heuristic

features that can effectively represent the relations between

two nominals that must be determined after performing a

textual analysis. Because the use of richer and higher-

quality features leads to better performance for the ex-

isting approaches, various features such as part-of-speech

(POS) tagging, syntactic patterns, and prepositions are fre-

quently used, and external resources such as WordNet data,

Wikipedia data, and Google n-grams are continually im-

ported [1][8][6]. These approaches are effective because

they leverage a large body of linguistic knowledge. How-

ever, this tendency also increases the dimensions of the fea-

ture vector space, resulting in an increased processing time.

Thus, it is difficult to simplify the complexity of the fea-

tures and improve the classification results simultaneously.

Recent research has tended to use distributed represen-

tations for words and neural network language models

(NNLMs) to solve this problem [9][7]. In our opinion, ob-

taining an appropriate distributed representation is no less

important for achieving highly accurate results and a low

computational cost than learning methods over the vectors.

In this paper, we introduce new distributed representa-

tions for sequences of words between two words, called

substring vectors, which have a much lower dimension

than the feature vectors used in existing approaches. We re-

construct and decrease the number of dimensions utilizing

an autoencoder such as an independent component analysis

(ICA) and principal component analysis (PCA). By com-

bining these representations with sophisticated nonlinear

classifiers, the relations between pairs of nominals in our

approach are classified efficiently. The experimental results

demonstrate that our approach achieves a sufficiently high

accuracy with a small computational cost.

2. Related Work

Relation classification is one of the most important top-

ics in natural language processing (NLP). The approach of

Bryan et al.(2010) won the relation classification contest

called SemEval-2010 Task 8 [3] and uses various types of

features that can be partitioned into eight groups, where

five groups are taken from external resources. This shows

that the combination of rich features and learning algo-

rithms that are tolerant to high dimensions, such as a linear

support vector machine (SVM), is one of the most effec-

tive approaches for relation detection. However, the perfor-

mance of that approach strongly depends on the quality of

the designed features and the amount of external resources.

With the recent revival of interest in deep neural net-

works (DNNs), many researchers have concentrated on the

use of deep learning approaches to learn features. Socher

(2012) proposed a new recursive neural network (RNN)

to learn vectors for relation classification [7], and Zeng

et al.(2014) used a convolutional DNN to extract lexical

and sentence-level features [9]. These studies showed that

the use of NNLMs improves the classification results more

than approaches based on traditional features. Unfortu-

nately, it is difficult to reduce the computational cost while

maintaining the prediction accuracy because of the large
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number of dimensions. Typically, PCA and ICA are often

utilized to learn a compressed, distributed representation

from input data [4], and they can lower number of dimen-

sions to some extent.

3. Proposed Method

We propose a distributed representation of substrings in

text data as well as a method for classifying semantic rela-

tions. The advantages of our approach are that only one

type of feature is used―substring vectors, and the con-

struction method is very simple.

3.1. Preprocessing Input Data

Let S 1, · · · , S M be the sentences in the data, and for each

i, S i = wi1 · · ·wi|S i |, where wk represents the k-th word of

S i, and |S i| represents the length of the S i. Let the set of

all sentences D = (S 1, · · · , S M). We assume that each sen-

tence S i has at most one pair of indices, ei1 and ei2, where

wiei1
and wiei2

are the pair of words to be classified with re-

spect to the semantic relations. To avoid double subscripts,

we let w(eik) denote wieik
for k = 1, 2. If S i has no such

pair of words, we let ei1 = ei2 = 0 and w(0) = λ, where λ

denotes the empty word. Input data are represented by the

sequence of triplets ⟨S 1, e11, e12⟩ , · · · , ⟨S M , eM1, eM2⟩. We

allow ei1 and ei2 to be chosen arbitrarily.

Each sentence S i is divided into three substrings by

splitting S i at ei1 and ei2. Let Substri1, Substri2, and

Substri3 be these substrings in order. The substring that

we mainly map into the vector space is Substri2 because

Substri2 is the most informative about the semantic rela-

tion between w(ei1) and w(ei2). For instance, suppose that

S 1 = The1 eye2 works3 using4 the5 retina6 as7 a8 lens9 .,

e1 1 = 2, and e1 2 = 6, i.e., w(e1 1) = ”eye” and w(e1 2) =

”retina”. S 1 can be considered a sentence that describes the

relations between e1 and e2. Then, we have

Substr1 1 = (w1 1) = (”the”),

Substr1 2 = (w1 2,w1 4,w1 5) = (”works”, ”using”, ”the”),

Substr1 3 = (w1 7,w1 8,w1 9) = (”as”, ”a”, ”lens”),

and Substr1 2 appears to explain the relation between

”eye” and ”retina” best among the three.

All sentences in D are used as training data by algo-

rithms that give distributed representations. The word vec-

tors are in RN , where N is arbitrarily chosen but is usually

approximately 10–100. Although we believe that the word

vectors have potentially sufficient information about the se-

mantic relations, it is still necessary to introduce another

distributed representation for the sentence itself, such as

substring vectors. Before that, we can extract important in-

formation about the semantic relations from the word vec-

tors utilizing PCA or ICA, which also lowers the number

of dimensions and simplifies the process.

3.2. Constructing a Substring Representation

The construction process is shown in Figure 1. First,

we create the weight dictionary on the basis of the word

frequencies. Then, we use this dictionary for weighting

and normalizing each word in the substrings and obtain the

substring vectors by averaging them.

w1w1 wkwk wnwn

… …

… … …

… … …

SUM

…

Weighting and Normalization

v(w1)v(w1) v(wk)v(wk) v(wn)v(wn)

v
′(w1)v
′(w1) v

′(wk)v
′(wk) v

′(wn)v
′(wn)

v(Substri2)v(Substri2)

Figure 1: Construction process of substring vectors.

To construct a reasonable representation for a substring

from word vectors, we define the weights for each word

that represent the degrees of importance of the relations

between pairs of nominals. For instance, suppose that a

dataset D includes only one sentence S 1, i.e., D = (S 1).

Among ”works”, ”using”, and ”the”, which are the ele-

ments of Substr1 2, ”the” appears in both Substr1 1 and

Substr1 2, whereas ”works” and ”using” only appear in

Substr1 2. Thus, we observe that, as compared to ”the”,

”works” and ”using” are more informative for the seman-

tic relation between ”eye” and ”retina”. In other words, if

a word w mainly appears in Set2, we believe that w fre-

quently represents some semantic relation.

For a word w and substring s, we define Cnt(w, s) as

the number of occurrences of w in s. In addition, for a

multiset of substrings S, let Cnt(w,S) =
∑

s∈S Cnt(w, s).

The weight for a word w is defined as

a(w) =
Cnt(w, Set2)

Cnt(w, Set1) + Cnt(w, Set2) + Cnt(w, Set3)
.

(1)

In order to prevent the length of each substring vector

from being too large or small or having the center of gravity

for the weighted word vectors, we normalize the weights in

Eq. 1 with respect to each substring Substri j:

ai j =
a(wi j)∑ei2−1

k=ei1+1
a(wik)

. (2)

Using the normalized weights and word vectors, we de-

fine the substring vectors v(Substri2) for each substring

Substri2 as

v(Substri2) =

ei2−1∑

k=ei1+1

ai jv(wi j), (3)

where v(w) is the word vector of w.

- 390 -



4. Dataset and Classifiters

To evaluate the performance of our proposed method, we

used the SemEval-2010 Task 8 dataset [3]. The dataset is

freely available and contains 10,717 annotated examples,

including 8,000 training instances and 2,717 test instances.

It distinguishes nine semantic directed relations, such as

Entity–Origin, Component–Whole, and Cause–Effect. In

addition, it has another special undirected relation called

Other.

We learn from the training data and obtain F1 scores

from the test data for 10 relations (including Other). The

average of the F1 scores for nine relations (excluding

Other) is called the macro-averaged F1 score. In addi-

tion, we remove the instances of Other from the training

and test data and obtain the average of the F1 scores for

nine relations, which is called micro-averaged F1-score.

To compare results of our proposed method, we adopted

the macro-averaged F1-score as a measure of the prediction

accuracy (same as previous studies). However, we adopted

the micro-averaged F1 score in other experiments because

the classification results will be more stable when exclud-

ing occurrences of Other.

We applied four multiclass classifiers: a random for-

est (RF), an SVM with the Gaussian radial basis function

kernel (SVM-RBF), a polynomial function kernel (SVM-

POL), and the linear SVM (SVM-LIN). For the parameter

settings of the RF, we let the number of trees be 120. For

parameters of the SVMs, we let the cost for incorrect clas-

sification be 60.

5. Experiments

In this section, we conduct four sets of experiments.

In the first set of experiments, we compare the F1 scores

and computing times of three classifiers in different dimen-

sions. The second set of experiments tests the validity of

our weighting method. In the third set of experiment, we

compare the F1 scores of the polynomial kernel classifier

at different degrees. Finally, we reduce the dimensions of

the word vectors using PCA and compare the performance

of classification in different dimensions.

System Name

micro-averaged

F1-score
# of External

Resources

ECNU-SR-7 75.21 2

ISI 77.57 3

FBK IRST 12VBCA 77.62 1

UTD 82.19 5

CDNN 82.7 1

Proposed (RF) 77.18 0

Proposed (SVM-RBF) 78.10 0

Table 1: F1 scores of all systems for relation classification.

To evaluate the performance of our proposed method, we

compared five methods with our method, as summarized

in Table 1. The first four are the best of the existing ap-

proaches that are not NNLMs, and the following were pro-

posed in current studies using NNLMs. We demonstrate

that our approach significantly outperforms existing ap-

proaches [3] that are not NNLMs when using an SVM with

Gaussian kernels. Crucially, unlike existing approaches,

our method does not use any external resources.
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Figure 2: F1 scores for each classifier as a function of the dimension of

the substring vectors.
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Figure 3: Computing time for each classifier as a function of the dimen-

sion of the substring vectors.
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Figure 4: F1 scores for each degree of the polynomial function kernel

SVM as a function of the dimension of the substring vectors.

Figures 2 and 3 show the F1 scores and computing time

for the first set of experiments. If the dimension of the

substring vectors is less than approximately 400, the non-

linear classifiers obtained better classification results than

the linear one. However, when the dimension is greater

than approximately 400, the linear classifier has better per-

formance than the others. This phenomenon appears to be
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Figure 5: Latent variables for the PCA of the original word vectors.
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Figure 6: F1 scores for each dimension of the transformation word vec-

tors. The classifier is the RF, and the baseline is F1 scores of the original

500 dimensions.

due to the overfitting caused by the high degree of freedom

that the SVM-RBF has as a classifier. This implies that a

sufficiently low-dimensional representation of the data is

required in order to use nonlinear classifiers efficiently. In

the first experiment, we obtained the best classification re-

sults using nonlinear classifiers for approximately 50 di-

mensions of the substring vectors, and the RF obtained bet-

ter performance than the other classifiers with respect to the

computing time.

In the second set of experiments, we verify that our

weighting method is effective. After processing the weight-

ing, the F1 scores of the classification results can be im-

proved by 3%–4%. This is because the words that fre-

quently appear in the substrings between pairs of nominals

to be classified (ei1 and ei2) are expected to carry much in-

formation about the semantic relations.

The results of the third set of experiments are shown in

Figure 4. We ensure that overfitting occurs more easily for

a higher degree of freedom for the classifiers, which is a

similar result from the first set of experiments. We have the

best combination when the degree of the kernel function

is not one and the number of dimensions is approximately

40–60.

In the fourth set of experiments, we reduce the dimen-

sions of the word vectors by PCA and ICA. The latent

values for processing are shown in Figure 5. We can un-

derstand that most classification information exists within

100 dimensions of the reconstructed vectors. We extract

several groups of reconstructed vectors in different dimen-

sions. The classification results of each group are shown

in Figure 6. The F1 score of the original 500 dimensions

is 0.811 as a baseline for comparison. If the dimension of

reconstructed vectors is less than 300, the processed data

obtained better classification results than the original 500

dimensions. When the dimension is greater than 300, the

F1 scores decreased because overfitting occurs. This exper-

iment also demonstrated that we can improve our substring

vectors by PCA.

6. Conclusion

In this paper, we introduce substring vectors, which rep-

resent the relationship between pairs of nominals. We show

that dimensional reduction of substring vectors largely af-

fects the classification results, especially when the clas-

sifiers have a high degree of freedom. The base perfor-

mance is obtained for relatively lower dimensions, i.e., ap-

proximately 40–60, using nonlinear classifiers such as an

RF and SVM-RBF. In our experiments, we found that our

approach yields better results than almost all of the exist-

ing approaches and can be applied to nonlinear classifiers.

However, there are many ways to improve our approach,

such as the utilization of external resources to optimize the

substring vectors.
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