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Abstract—In recent years, brain activity measuremenf. Experiment

by near-infrared spectroscopy (NIRS) has been applied to

brain-machine interfaces (BMIs). Classification of brain We conducted experiments with three right-handed vol-
activity based on measurement data is a fundamental stapteers. A probe was placed over the primary motor cortex,
in the development of BMIs. It has been reported tha@ased on the 10-20 international system (Fig. 1). Each vol-
classification of NIRS data by support vector machines ignteer performed five trials consisting of a before-task rest,
promising. In this paper, we introduce the extreme learning task, and an after-task rest, each lasting 20 s. The task
machine (ELM) for the classification of brain activity mea-content was left-hand grasping, which participants were in-
surement data by NIRS. As a result, ELM improves classftructed to perform as quickly as possible. Learning data

fication accuracy and reduces calculation times in CompdNaS Obtaineq from. four trials and test data from one trial.
ison with conventional methods. A low-pass filter with a 0.5 Hz cutfbfrequency was ap-

plied to the NIRS data. Additionally, the NIRS data were
_ normalized to be within a range of 0 to 1.
1. Introduction The study was approved by the ethics committee of

Tokyo Denki University and was conducted in accordance

In recent years, brain activity measurement technology;iy the current version of the Helsinki declaration. All

has been applied to brain-machine interfaces (BMI), whicB icinants gave informed consent after the study was ex-
are interfaces that connect the brain and machinery. B

. ) ) i lained to them.
using near-infrared spectroscopy (NIRS) in particular has

attracted considerable attention. Successful developme-* a

of BMI should lead to quality-of-life improvements for per- ® @ Licht emitter @ :light detector

sons with physical disabilities. ® @ 38K 38K 3K )
There are two broad types of brain activity measuremel ® [e] (<]

methods: those that measure the neural activity of the bra C | JON JON

L [¢]
itself and those that measure changes in brain blood flo Rear\@ Front (cd) (]
associated with neural activity. Typical examples of the for ; L AN JUK JEK )
mer include electroencephalography (EEG), and the latt - YER = =
includes NIRS and functional magnetic resonance imag
ing (fMRI). EEG has the merit of high temporal resolution,
but it is limited by low spatial resolution and small signal Figure 1: 10-20 international system.
strength. fMRI has the drawbacks of low temporal resolu-
tion and high cost. In contrast, NIRS has a higher spatial
resolution than EEG and a higher temporal resolution than
fMRI, so in this paper we use NIRS for a BMI. NIRS is a3 Estimation of Response Delay in Cerebral Blood
method for sensing brain activity by measuring hemoglobin  gjqy
in brain blood flow by using near-infrared light. Classifica-
tion of brain activity using NIRS has been performed with Previous studies have demonstrated that a time delay of
various classifiers [1][2], but it has been found that in mangeveral seconds occurs in the response of brain blood flow
cases classification by this method is not satisfactory.  effects due to neural activity. It is possible to improve the

This paper introduces classification abilities of the exreliability of analysis results by estimating this delay time
treme learning machine (ELM) [3]. We adopt a supporbecause NIRS measures changes in cerebral blood flow due
vector machine (SVM) [4] as the conventional method foto neuronal activity. Delay-time estimation is performed
comparison. for 4-channel data (ch. 9, ch. 12, ch. 13, ch. 16) surround-

- 381 -



Table 1: Number of significant windowsftirences around
the start-task time.

] Time | significant diference|
-2sto Os and Os to 2s 13
Os to 2s and 2s to 4s 21
2sto 4s and 4s to 6s 18
4s to 6s and 6s to 8s 14
6s to 8s and 8s to 10s 20
8sto 10s and 10s to 12s 26

Input layer Hidden layer  Output layer

Table 2: Number of significant windowsftérences around

the end-task time. Figure 2: Structure of ELM.

] Time | significant diference]
-2sto Os and Os to 2s 13 Next, calculate the output weightas
Os to 2s and 2s to 4s 20
2sto 4s and 4s to 6s 23 B=H"xT, 3)
4s to 6s and 6s to 8s 19
6s to 8s and 8s to 10s 18 whereT is the training data set artdf” denotes the pseudo-
8s to 10s and 10s to 12s 20 inverse matrix oH. Finally, we calculate the output value

y as
y=Hgp. 4)

ing C4 in the 10-20 system. In the estimation, the task > gy

start time is set to 0 s, and the Mann—Whitney U test is per-

formed in every 2-s window by shifting the window from SVM is a classifier proposed by Vapnik et al. [4]. A

-2 sto 12 s. Next, the after-task rest start time was set kgrnel trick can be easily applied to SVM. The decision

0 s, and then the U test was performed as above. Table§unction of SVM is

and 2 show the number of significantférences for task-

start and task-end analysis at a significance level of 1%. D(x) = ZaiyiK(Xa, X) + b, (%)

These tables show an estimated 2-s delay, because there ieS

are a number of significant fierences between 0 and 2 s
. ; where

and between 2 and 4 s from the previous window.

= > ayiK(%, ). (6)
i€S
4. Classification Algorithm Here, @, y and K(x;, X) are a Lagrange multiplier, output
training data, and a kernel function, respectively[5]. In this,
4.1. ELM «a is obtained by solving the following optimization prob-

ELM is a learning algorithm for single-hidden- Iayerlem:

feedforward neural networks (SLFNs) proposed by Huang

1 M
et al. [3]. Figure 2 shows the structure of ELM. The al- max Q(a) = Zm 5 Z a;jYiyiK(X, X)), (7)
gorithm is as follows. Assume a training set, activation i=1 i.j=1
functiong(x), and hidden node numbér An input weight
w; and biag; are randomly generated, and the hidden layer st Z yiei =0, (O<ai<C). (8)
output matrixH is calculated as i=1
gwixy + 1) - g(wixg +by) 4.3. SVR
H= : : , (1) SVR is a modified SVM algorithm adapted for applica-
' ' tion to regression problems [5][6][7]. The decision func-
b)) --- b
O(Waxas +bs) glwixn +bi) tion of SVR is
where Zm:
_ ! f(X) = ) (@i - )K(x,X) +b, 9)
W= e @ =a
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where

b=y -w'¢(x)-s (0<a<C), (10) 1.2 — —-NIRSdata
9] predicted time series
b=yi—-w'¢(x)+e (0<af <C). (12) %’ 1 }
Here,a;, w, ¢, ande are a Lagrange multiplier, a cfiie S 08 ﬁkﬂw ﬂdk i
cient vector, a mapping function, and the width ofbe, @ . | "J‘ J'H'
respectively. The tube is used to reduce error close to the T M i ' ”\
regression curve, with the error defined as '§ 0.4 WJ‘A MM Tgi WM
- i I
E 0.2 \M
E(r) _{ Irfl—e otherwise (12) =
-0.2
wherer is a residual and ande; are obtained by solv- 0 o2 30 40 50 60
ing the following optimization problem: Time (s)
: 15 Figure 3: NIRS data (solid li d predicted ti i
min ) = = )@ —a)K (%, X gure 3: ata (solid line) and predicted time series
Qo) = 5 ) fn=ade=a)K(x. ) (dashed line) by ELM,

i,j=1

+e iZl:(ai +6Vi*)—; Yiei—a;) (13)

-
[N

— — - NIRSdata
m . &) predicted time series
D (@ —a)) =0, 2
S.t i=1 (14) -:5 08 M ]f '
0<ai<CO0<qf % 0.6 i J‘%Hw |
k5 0.4”‘ W }
5. Results IS f ; { " "W f
S 02
5.1. Time-series Prediction g
0
The conventional evaluation technique for parameter set =
-0.2

ting of classification algorithms is based on only the suc- 10 20 30 40 50
cess rate of the classification. In this paper, we use a time Time (s)

series prediction for evaluation of parameter settings. We

EeLI;\on’rrSn\?g't;nr:g ESQE spr?);e;g;;ttlig?] (ugg;g[g]r_]r.le.:bf:el%ogﬁgr\z‘?:igure 4: 'NIRS data (solid line) and predicted time series
the parameter values used for each algorithm. The para lashed line) by BP.
eter values in Table 3 were obtained by trials and errors
for each models.Table 4 shows the root-mean-squared errc

(RMSE) and computation time for the training. Figures 3— 1.2

o

5 show the prediction results. ELM has the best perfor- 2 grlsjcted timeseries
mance among the three algorithms for NIRS data predic- g N
tion, and the best number of hidden-layer neurons for ELM 5 0.8 /;‘\\1,‘{'3"]‘,,_‘\\ }
is 27. 2 06 ; rf-"’ﬂ v Iﬂ"f H("‘u?fﬂ’rw :‘» ”
- . T X mr{ ;"“\\‘hm ,JJ‘J \'IL ‘I“:‘\ I
5.2. Classification B o4 NN Tl W
X U vy LI AN
We used ELM and SVM for classification algorithms. 5 o2 ' 'ﬂf“j ’
Evaluation of classification ability was performed using 5- =
fold cross-validation. Table 5 shows parameter values use = 0
in each algorithm. Table 6 shows the classification results _g>»
0 10 20 30 40 50

and computation time for the training.
In the results, the classification rate for ELM was Time (s)

85.88% and the computation time was 0.023 s. Using

SVM, the classification rate was 85.48% and the compurigure 5: NIRS data (solid line) and predicted time series

tation time was 1.487 s. Table 4 thus indicates that ELNdashed line) by SVR.

performs better than SVM.
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Table 3: Parameter values used in the three prediction tech- Table 6: Classification rates and computation times.
nigues.

H ELM ‘ BP ‘ SVR ‘ | Algorithm | Classification rat§ Computation time (s)
Input dimension 9 6 9 ELM 85.88 0.02328
P SVM 85.48 1.487
Lag 1 1 1

# of training data 1846 | 1846 461

# of Hidden layer neuron 27 10 (N.A)
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Table 5: Parameter values used in the two classifiers.

| [ ELM [ SVM |
Input dimension 9 9
Lag 1 1
# of training data 1846 | 1846

# of Hidden layer neuron 27 (N.A)
Margin parameterC (N.A) | 300
kernel function (N.A) | RBF
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