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Abstract—We investigate firing patterns in mutually
coupled two neurons with inhibitory synapses. In a pre-
vious study, we found clustered states: two groups with
distinct firing rates and one group with subthreshold oscil-
lations. We study its generation mechanism in the smallest
system. As a result, we obtain that the firing frequency and
the synaptic conductance are important parameters to gen-
erate the clustered states.

1. Introduction

Recently, complex network structures, such as small-
world [1] and scale-free [2, 3], have been found in various
real neuronal networks [4, 5]. Synchronization in neuronal
networks is also found and synchronous activities play an
important role in information processing in the brain [6].
On the other hand, they are not desirable for several neuro-
logical diseases such as epilepsy and tremor in Parkinson’s
disease [7]. Thus the studies of synchronization in com-
plex networks are very important and have attracted much
interest. Barahona and Pecora developed the MSF(Master
Stability Function) analysis to study synchronizability in
complex networks [8], and Nishikawa and Motter extended
it for an asymmetric case [9]. Since the average path length
becomes short in small-world networks, synchronization
is achieved more easily than in a regular lattice [10–13].
However, it is not the only condition, synchronizability also
depends on network size, the degree distribution (distribu-
tion of a number of links), the clustering coefficient and
so on [14–17]. These studies mainly come from the idea
that the connections between cells promote in-phase syn-
chronization. Thus, short-cuts in small-world networks can
enhance synchronizability. However, in general it is said
that the inhibitory connection generates anti-phase syn-
chronization. Although inhibitory networks in the brain are
important to generate complicated firing patterns [18–27],
the studies of such inhibitory networks are not enough as
far as we know.

In the previous study [28], we observed an interesting
solution in small-world networks composed of only in-
hibitory neurons, which has clustered three states: firing
with frequencies A and B (A/B is irrational), and sub-
threshold oscillations. In the full dimension, this solution
is quasi-periodic, however, just watching the time series of

the oscillatory solution with firing frequency A or B, it is
almost periodic. In this paper, we try to clarify the gen-
eration mechanism of such a solution when a number of
coupled neurons is two.

2. Model Equations

We consider mutual coupled Morris-Lecar (ML) neu-
rons with inhibitory synapses. The ML neurons [29] with
synaptic coupling are described by

C
dVi

dt
= −gL(Vi − VL) − gCa M∞i (Vi − VCa)

−gKNi(Vi − VK) + Iexti + Isyni ,

dNi

dt
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τNi
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)

−
si

τd
,

(i = 1, 2),

whereVi, Ni andsi are the membrane potential, the activa-
tion variable for K+ and the gating variable for the synapse,
respectively.τr andτd are the raise and the decay time of
the synapse, respectively.N∞i andτNi are functions ofVi.
Isyni is the synaptic current given by

Isyni = Gsyn ji(Vsyn − Vi)s j, (2)

( j = 1 and 2 fori = 2 and 1, respectively)

whereGsyni j is the maximum synaptic conductance from
ith to jth neurons, andVsyn is the reversal potential. We
define the threshold value for firing isVi = 0. The values
of (τr, τd, Vsyn) are fixed as (0.5, 7.0,−60.0) for the in-
hibitory synapse [30]. The schematic diagram of our model
is shown in Fig. 1. One of bifurcation parameters is the fir-
ing frequency for the single neuron, which is controlled by
the value of the external inputIexti (direct current).

3. Results

We fix the parameter values asf2 = 20 andGsyn21 = 3.0
[28] for Figs. 2 and 3 which show bifurcation diagrams on
the parameter plane (f1, Gsyn12) when f1 ≤ f2 and f1 ≥ f2,
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respectively. The waveforms of membrane potentialsV1

andV2 in the regions with circled numbers are presented
in Figs. 4(a) to 4(f). We explain the synchronized states in
each region. In region1©, V1 andV2 are synchronized at
anti-phase (Fig. 4(a)). We observe this firing pattern in a
wide parameter region because these waveforms are typi-
cally observed in a system of inhibitory coupled neurons.
From this state, asf1 is decreased whenGsyn12 is larger than
3.0, the firing of neuron 1 is completely suppressed by neu-
ron 2 (Fig. 4(e)), which is observed in region5©. On the
other hand, asf1 is increased, neuron 1 suppresses neuron
2 (Fig. 4(f) is observed in region6©). Next, we decrease the
value ofGsyn12 from the closed circle in Fig. 2. After transi-
tion from region 1© to 2©, we obtain neurons synchronized
with a phase lag, see Fig. 4(b). The reasons of generating
this solution are as follows:

(1) the amplitude of the synaptic signal from neuron 1 to
neuron 2 is not enough to suppress neuron 2,

(2) because of (1), the firing frequency of neuron 2 be-
comes higher, (suppression ofV2 in Fig. 4(a) disap-
pears)

(3) because of (2), the synaptic input from neuron 2 to neu-
ron 1 is injected when the membrane potential of neu-
ron 1 is low, ((Vsyn − V1) in Eq. (2) becomes small)

(4) the synaptic input from neuron 2 to neuron 1 is also not
enough to suppress neuron 1.

Thus, the suppression of neurons 1 and 2 disappears and
Fig. 4(b) is observed in region2©. This solution meets the
period-doubling bifurcation by decreasing the value off1
from region 2© to 3©, and two-periodic solutions shown in
Fig. 4(c) appear in region3©. In region 4©, we observe non-
periodic states, however the firings of neurons 1 and 2 are
almost in-phase.

Figure 5 shows a bifurcation diagram on the parameter
plane (f1, f2) whenGsyn12 = Gsyn21 = 3.0. From this figure,
we can see that subthreshold oscillations appear by chang-
ing the firing frequency of each neuron.

4. Discussion and Conclusion

In the previous study [28], we observed an interesting
quasi-periodic solution. It contains three clustered groups:
two groups consisting of fired neurons with distinct firing
frequencies (in the same group, neurons produce synchro-
nized firings with a phase lag or anti-phase), and one group
with only subthreshold oscillations (no firings). Identical
neurons showed different firing frequencies as a transient
state, and a number of the synaptic inputs is not uniformly
distributed [28].

In this study, we consider the simplest case (a number of
coupled neurons is 2) and clarify the basic mechanism of
generating the clustered states. The values of two parame-
ters (frequency and synaptic conductance ) are changed be-
cause the former and latter correspond to the different firing
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Figure 1: Schematic diagram of our model.f1 and f2 indi-
cate frequencies of single neuron.

frequencies and different number of synaptic inputs in the
previous study, respectively. As a result, we obtain anti-
phase synchronization without changing the values of the
parameters. Moreover, we find the existence of subthresh-
old oscillations and synchronization with a phase lag by
changing the values of the frequency and the synaptic con-
ductance, respectively. These can explain three clustered
states: anti-phase synchronization, synchronization with a
phase lag and subthreshold oscillations. Subthreshold neu-
ronal oscillations were observed in the experiments [31,32]
and they are related to the oscillation withθ rhythm which
promotes LTP (long-term potentiation) [33–35]. Our previ-
ous results showed the importance of the subthreshold os-
cillation to produce complicated firing patterns. Here, we
clarify that the generation of the subthreshold oscillation is
mainly controlled by the firing frequency of the single neu-
ron. Even though we consider a system of coupled identi-
cal neurons having the same own firing frequency, the dis-
tribution of firing frequencies become nonuniform due to
inhibitory synapses when a number of neurons are large.
Studying bifurcations of a system of large coupled neurons
is one of our open problems.
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synaptic inhibition in a hippocampal interneuronal net-
work model, J. Neuroscience 16(20):6402-6413, 1996.

[21] A.L. Person and I.M. Raman, Purkinje neuron syn-
chrony elicits time-locked spiking in the cerebellar nu-
clei, Nature 481.7382:502-505, 2012.

[22] B. Haider, M. Haüsser and M. Carandini, Inhibition
dominates sensory responses in the awake cortex, Na-
ture 493.7430:97-100, 2013.

- 363 -



-50

-40

-30

-20

-10

 0

 10

 20

 30

 0  100  200  300  400  500

V
 [

m
V

]

t [ms]

V
1

V
2

(a) 1© f1 = 20, Gsyn12 = 3.0
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(b) 2© f1 = 20, Gsyn12 = 0.5
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(c) 3© f1 = 17, Gsyn12 = 1.0
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(d) 4© f1 = 17.3, Gsyn12 = 1.6
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(e) 5© f1 = 16.25, Gsyn12 = 3.0
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Figure 4: Waveforms in each region in Figs. 2 and 3. Black
and red curves indicate membrane potential for neuron 1
and neuron 2, respectively.
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