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Abstract—Traditional gyroscopes are mechanical de-

vices used for measuring and maintaining orientation.

They consist of spinning discs enclosed in gimbal rings

that allowed for free rotation in any orientation. New man-

ufacturing techniques in microelectromechanical systems

(MEMS) allow for mass manufacturing of low-cost and

miniaturized vibratory gyroscopes. At the same time, these

smaller gyroscopes are more prone to external perturba-

tions. Small disturbances, such as thermo interference, can

increase phase drifts in the oscillatory signal and give inac-

curate results, specially for guidance systems. To remedy

the lowered sensitivity problem, we consider networks of

coupled MEMS gyroscopes. We apply group theoretical

methods and normal form techniques to simplify the gov-

erning equations. Analysis of the normal form equations

allows us to unravel the nature of the bifurcations that lead a

ring of gyroscopes of any size into and out of synchroniza-

tion. From an engineering standpoint, the synchronization

regime is of particular importance because it can lead to a

significant reduction in phase drift.

1. Introduction

High-dimensional nonlinear systems with symmetry

arise naturally at various length scales: in molecular dy-

namics [1], underwater vehicle dynamics [2], in magnetic-

and electric-field sensors [3, 4, 5], in gyroscopic [6, 7]

and navigational systems [8, 9], hydroelastic rotating sys-

tems and boats/ships [10, 7], and in complex systems

such as telecommunication infrastructures [11] and power

grids [12]. Whereas the theory of symmetry breaking bi-

furcations of typical invariant sets, i.e., equilibria, peri-

odic solutions, and chaos, is well-developed for general

low-dimensional systems [13], there are significantly fewer

results on the corresponding theory for symmetric high-

dimensional nonlinear mechanical and electrical systems,

including coupled Hamiltonian systems [14, 15]. Conse-

quently, the aim of this work is to advance the study of the

role of symmetry in high-dimensional nonlinear systems

with Hamiltonian structure. As a case study, we consider a

network of vibratory gyroscopes coupled bidirectionally in

a ring.

A conventional vibratory gyroscope consists of a proof-

mass system as is shown in Fig. 1. The system oper-

ates [16, 17, 18] on the basis of energy transferred from a

driving mode to a sensing mode through the Coriolis force.

In this configuration, a change in the acceleration around

the driving x-axis caused by the presence of the Coriolis

force induces a vibration in the sensing y-axis which can

be converted to measure angular rate output or absolute an-

gles of rotation.

Figure 1: Schematic diagram of a vibratory gyroscope sys-

tem. An internal driving force induces the spring-mass sys-

tem to vibrate in one direction, the x-axis in this example.

An external rotating force, perpendicular to the xy-plane in-

duces oscillations in the y-direction by transferring energy

through the Coriolis force. These latter oscillations can be

used to detect and quantify the rate of rotation.

Normally a higher amplitude response of the y-axis

translates to an increase in sensitivity of a gyroscope. Thus,

to achieve high sensitivity most gyroscopes operate at res-

onance in both drive- and sense-modes. But since the

phase and frequency of the sense-mode is determined by

the phase and frequency of the Coriolis force which itself

depends on those of the driving signal, most gyroscopes

operate exactly at the drive-mode resonant frequency while
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the sense-mode frequency is controlled to match the drive-

mode resonant frequency. Consequently, the performance,

in terms of accuracy and sensitivity, of a gyroscope de-

pends greatly on the ability of the driving signal to pro-

duce stable oscillations with constant amplitude, phase,

and frequency. To achieve these important requirements,

a variety of schemes, based mainly on closed-loops and

phase-locked loops circuits, have been proposed [18]. Re-

cently parametrical resonance in MEMS (Micro-Electro-

Mechanical Systems) gyroscopes has also been extensively

studied as an alternative to harmonically driven oscillators.

In this work we consider an alternative approach to increase

performance based on a weakly coupled network. The fun-

damental idea is to synchronize the motion of each gyro-

scope to the Coriolis driving force, so that the collective

signal from all gyroscopes can be summed and then de-

modulated to yield an optimal response in terms of min-

imizing phase drift and robustness to noise and material

imperfections.

2. Modeling

Based on the fundamental principles of operation illus-

trated in Figure 1, the governing equations of a bidirection-

ally coupled ring of gyroscopes is described by the follow-

ing system of differential equations

mẍi + cx ẋi + κxxi + µx3
i
= fe(t) + 2miΩẏi+

λi j(xi+1 − 2xi + xi−1)

mÿi + cyẏi + κyyi + µy
3
i
= − 2miΩẋi,

(1)

where x (y) represents the drive (sense) modes, m is the

proof mass, Ωz is the angular rate of rotation along a per-

pendicular direction (z-axis), cx (cy) is the damping coef-

ficient along the x- (y-) direction, and κx (κy) and µx (µy)

are the linear and nonlinear damping coefficients along the

x- (y-) directions, respectively, i ∼ j denotes all the jth gy-

roscopes that are coupled to the ith gyroscope, λi j denotes

the coupling strength, and fe(t) = Ad sinωdt the sinusoidal

driving force with amplitude Ad and frequency ωd.

2.1. Hamiltonian Formulation

Let qi = (qi1, qi2)T = (xi, yi)
T be the configuration com-

ponents and pi = mq̇i +Gqi be the momentum components

of a single gyroscope, where

G =

(

0 −mΩ

mΩ 0

)

.

Directly differentiating the momentum components, we get

(after rearranging terms) mq̈i = ṗi −Gq̇i. Then the original

equations (1), which have total phase space R4N , can be

written in the following form. Letting Zi = (qi, pi), the

internal dynamics of each individual ith gyroscope can be

expressed as follows

F (Zi) =

(

−G
m

1
m

I2

−GF
m
+ K − 1

m
G2) 1

m
(F −G)

) (

qi

pi

)

+

(

0

− fi

)

,

with F = diag(cx, cy), K = diag(κx, κy) and fi = µ(q
3
i1
, q3

i2
)T .

Then the governing equations of the DN symmetric ring can

be written as in (??), that is

dZi

dt
= F (Zi) +H(Zi+1, Zi) +H(Zi−1, Zi) + R(t), (2)

where R(t) = (0, fe(t), 0, 0)T ,

H(Zi+1, Zi) =

(

0

λΓ(qi+1 − qi)

)

and Γ =

(

1 0

0 0

)

.

Since the nonlinear terms are given only by cubic terms

each gyroscope is symmetric with respect to the −I trans-

formation (qi, pi) → (−qi,−pi). Because the coupling is

also symmetric with respect to this Z2(−I)-symmetry; that

is, H(−Zi+1,−Zi) = −H(Zi+1, Zi), then the networks have

symmetry group given by DN(γ, η) × Z2(−I).

For the remainder of this section we assume cx = cy = 0

and consider the unforced systems with fe = 0. Later on

we discuss the effects of damping and the periodic driv-

ing signal as well. Direct calculations show that the net-

work equations (2) are Hamiltonian and can be expressed

in terms of position and momentum coordinates (q, p) =

(q1, . . . , qN , p1, . . . , pN) as

H(q, p) =
1

2

N∑

i=1

−pT
i

(

K −
G2

m
+ 2λΓ

)

qi − qT
i

G

m
qi+

pT
i

G

m
pi + qT

i

I2

m
pi − (qi+1 + qi−1)TλΓqi + H2(q, p),

(3)

3. Main Results

In this section we state the main results of the effects

of the main bifurcation parameter, the coupling strength λ,

and the forcing (recall that in the previous section we have

assumed fe(t) = 0) on the network dynamics. We show that

existence and stability of periodic solutions of the forced

system, fe(t) , 0, are in one-to-one correspondence with

those of the equilibrium solutions of the unforced system,

fe(t) = 0. Furthermore, we state one of the main results

of this manuscript: a theorem that provides an analytic ex-

pression for the onset, as λ is varied, of fully synchronized

periodic solutions which preserves the DN × Z2–symmetry

of the ring and that is valid for any ring size N. This is the

expression that was very difficult to obtain through pertur-

bation methods [?, ?]

3.1. Synchronized Periodic Solution

We consider again the governing equations for the bidi-

rectional ring (without forcing) written as a separation of

linear M and nonlinear terms, that is

dZ

dt
= MZ + F(Z), (4)

where again: Z = (Z1, . . . , ZN)T , Zi = (qi, pi)
T , F =

(F1, . . . , FN)T , and Fi = (0,− fi)
T with i = 1, . . .N mod

- 354 -



N. Also, recall that M = Mbi. Let τ = t and now write the

system in extended phase space

dZ

dt
= MZ + F(Z) + HA(τ) := S (Z, τ, A),

dτ

dt
= 1. (5)

where

HA(τ) = (0, fe(τ), 0, 0
︸        ︷︷        ︸

, . . . , 0, fe(τ), 0, 0
︸        ︷︷        ︸

).

︸                                  ︷︷                                  ︸

N times

We can now state one important result, which includes an

analytical expression for the onset of synchronized solution

in the forced-driven gyroscope with no damping. The ef-

fects of small damping are discussed at the end of this sec-

tion. We make the following assumption for the remainder

of the paper:

κx = κy =: κ.

Recall that an equilibrium is spectrally stable if all the

eigenvalues of the linearization of the equilibrium are on

the imaginary axis and for a periodic orbit, if all its Flo-

quet multipliers are on the unit circle. A stronger concept

for the system obtained from linearization near equilibrium

or periodic orbit is strong stability also called parametric

stability. A linear periodic Hamiltonian system is strongly

stable if all solutions are bounded for all t ∈ R and the

same remains true for sufficiently small linear Hamiltonian

periodic perturbations, see [?]. Note that strong stability

implies spectral stability.

Theorem 3.1 If the forcing parameter A is small enough,

system (5) with bidirectional coupling has a fully synchro-

nized 2π/ω-periodic solution Z̃(t) near Z0 with isotropy

subgroup DN × Z2, strongly stable for

λ > λ∗ = −
κ

2(1 − cos(2π⌊N/2⌋/N))
. (6)

The proof of this theorem is done in several steps. In the

following proposition, we begin by establishing the rela-

tionship between equilibrium solutions of the unforced sys-

tem with periodic solutions of the forced system with small

coupling parameter A.

Proposition 3.2 For the forcing frequency ω ∈ R \

{a finite number of points}, equilibrium solutions of the un-

forced system (4) are in one-to-one correspondence with

2π/ω-periodic solutions of (5). Moreover,

1. If Z0 is an equilibrium solution of (4) with isotropy

subgroup Σ, then the corresponding periodic solution

P0(t) has spatial isotropy subgroup Σ.

2. Z0 is spectrally stable/strongly stable/unstable if

and only if P0(t) is spectrally stable/strongly sta-

ble/unstable.
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Figure 2: Two-parameter bifurcation diagram outlines the

region of parameter space (Ω, λ) where the vibrations of

a system of three gyroscopes, coupled bi-directionally, be-

come completely synchronized. The boundary curve corre-

sponds to the locus of the pitchfork bifurcation where three

periodic solutions of the motion equations (5) merge into

a D3 × Z2 symmetric one as the complete synchronization

state becomes locally asymptotically stable.

Observe that for the special case of a ring with N = 3

gyroscopes, Eq. (6) yields λ∗ = −κ/3. Based on param-

eter values estimated experimentally, we set κ = 2.6494

N/meter to get λ∗ = −0.8831. This value fits very well the

almost vertical line threshold, in parameter space (Ω, λ),

which was originally obtained through asymptotic meth-

ods [?] , and reproduced in Fig. 2. The only difference

is the cusp shape, which is due to the effects of damping.

Recall that damping has been neglected in our analysis in

order to preserve the Hamiltonian structure of the cells and

of the network. Nevertheless, that cusp region is extremely

small considering the scale along the λ-axis.

Our last result is concerned with the bifurcating solu-

tions from the 2π/ω-periodic solution Z̃(t) as the coupling

parameter decreases below λ∗.

Theorem 3.3 A Z2(−I)-orbit of branches of periodic so-

lutions Z̃b(t) with isotropy subgroup Z2(κ) bifurcates from

Z̃(t) as λ decreases below λ∗. For N odd, the Z2(κ) orbit

has a form conjugate to

Z̃b(t) = (Zb
1(t), Zb

2(t), . . . , Zb
N(t)),

with Zb
j
(t) = Zb

N+2− j
(t) for j = 2, . . . , (N+1)/2. For N even,

Z̃b(t) satisfies a form conjugate to the conditions Zb
j
(t) =

Zb
N
2
+ j

(t) for j = 1, . . . ,N/2.

The proof of this theorem is done by showing the existence

of a pitchfork bifurcation from the synchronous equilib-

rium solution in the non-forced system.
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Figure 3: Diagrams illustrating the bifurcation of the

strongly stable synchronized solution to synchrony-broken

patterns with Z2(κ)-symmetry when λ decreases below λ∗

as described by Theorems 3.1 and 3.3. This bifurcation

comes from a pitchfork bifurcation of the unforced system

and is illustrated via the diagram. The shades of grey in the

circles identify the synchronized gyroscopes.

Figure 3 illustrates the results of Theorem 3.1 and The-

orem 3.3 for the cases n = 3 and n = 4. The synchronized

periodic solution is strongly stable for λ > λ∗, loses its sta-

bility at λ = λ∗ and bifurcates to Z2(κ)-symmetric periodic

solutions for λ < λ∗. Because this transition comes from a

pitchfork bifurcation of the unforced system, the −I sym-

metry relates the two bifurcating solutions. The shades of

grey (or colours) identify the synchronized gyroscopes.
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