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Abstract—We show that sparse structures – in form
of subsystems – of a dynamical system induce decom-
positions of the Koopman and Perron-Frobenius operator.
Functorial properties of these operators imply that eigen-
functions for the subsystems induce eigenfunctions for the
whole system, and invariant measures for the whole system
induce invariant measures of the subsystems. We reverse
that result for invariant measures under a necessary com-
patibility condition. Further we demonstrate by a numeri-
cal example that exploitation of sparsity improves accuracy
for extended dynamic mode decomposition. *

1. Summary

We assume to have a dynamical system ẋ = f (x) with
dynamics f : Rn → Rn and a set X ⊂ Rn that is positively
invariant, i.e. solution starting in X stay in X for all positive
times. The corresponding Koopman operator for t ∈ R+ is
defined as Ttg := g ◦ φt for functions g : X → C in a
suitable function space, where φt denotes the solution map
to the differential equation (see [1]). The operator Tt is
linear, and so is its adjoint operator Pt : M(X)→ M(X), the
Perron-Frobenius operator, acting on the space of measures
M(X) by the pushforward Pt = (φt)#. We investigate how
sparse structures in the dynamical system can be exploited
for Koopman and Perron-Frobenius analysis.

The procedure we present is as follows: First, the sub-
systems need to be identified. The subsystems lead to a
decomposition of the Koopman and Perron-Frobenius op-
erator. Such a decomposition comes with the advantage of
treating lower dimensional systems, which leads to reduc-
tion of computational complexity. Figure 1 illustrates this
approach.

Definition 1. For I ⊂ {1, . . . , n} we call (I, fI) a subsys-
tem or a subsystem induced by I if fI := ΠI ◦ f only de-
pends on the states index by I where ΠI : Rn → R|I| with
ΠI(x1, . . . , xn) = (xi)i∈I are projections in Rn onto canoni-
cal coordinates indexed by I by .
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Figure 1: Illustration of sparse EDMD: 1. Identification of subsystems,
2. The subsystems induce a block structure for the Koopman operator
(lift), 3. Exploitation of the block structure via decoupling of the subsys-
tems.

The idea of a subsystem (I, fI) is that we can treat it as
a lower dimensional dynamical system, namely on R|I| in-
stead of Rn. We view fI as a (Lipschitz) vector field on
R|I|. The semiflow induced by fI : R|I| → R|I| is denoted
φI

t : R|I| → R|I| for t ∈ R+ and, because (I, fI) is a subsys-
tem, it satisfies

φI
t ◦ ΠI = ΠI ◦ φt. (1)

As a consequence, so-called eigenfunctions for the sub-
systems induce eigenfunctions of the whole system and
eigenmeasures of the whole system induce eigenmeasures
for the subsystems [2]. This result can be partially reversed,
see [4]. In other words the subsystem allow for decompose
the Koopman and Perron-Frobenius operator into the cor-
responding operators T I

t and PI
t on the subsystems while

maintaining important spectral information.
Because the operators T I

t and PI
t correspond to lower

dimensional spaces their computational complextiy is re-
duced. This can be exploited for extremal invariant mea-
sures computation from [3], and extended dynamic mode
decomposition [4].
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