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Abstract—In this paper, wireless communication system 

working over Gamma shadowed κ-μ small scale fading channel 

in the presence of cochannel interference exposed to κ-μ short 

term fading is analyzed. For considered model, signal to 

interference ratio (SIR) at the output can be presented as the 

ratio of κ-μ random variable and product of square root of 

Gamma random variable and κ-μ random variable. Here, 

probability density function (PDF) and moments of proposed 

ratio will be evaluated. By using derived expressions, the outage 

probability and the bit error probability can be calculated.  The 

influences of Rician factors of desired signal envelope and 

interference envelope on moments will be discussed and 

analyzed.   

Keywords—cochannel interference; Gamma shadowing; κ-μ 

fading; moments; probability density function.  

I.  INTRODUCTION 

The long term fading, short term fading cochannel 
interference degrade the outage probability, symbol error 
probability, system capacity and average fade duration of 
wireless communication system. Small scale fading causes 
signal envelope average power variation resulting in system 
performance degradation [1], [2]. 

There are more distributions using to express signal 
envelope variation in multipath fading channels [3], [4]. In this 
paper, desired signal envelope is described with κ-μ 
distribution [5], [6]. Cochannel interference propagates in 
Gamma shadowed κ-μ multipath fading channel. The κ-μ 
distribution depicts small scale signal envelope variation in 
line-of-sight multipath fading channel with more clusters [7]. 
The parameter k is Rician factor which can be calculated as 
the ratio of line of sight components power and scattering 
components power. System performance is better for higher 
values of Rician factor. Rician factor increases as dominant 
components increase, or scattering components power 
decrease [8].  

In [9], the authors performed a characterization of the 
fading experienced in body to body communications channels 
for fire and rescue personnel using κ-μ distribution.  A  

general κ-μ model with parameters κ=2.31 and μ=1.19 was 
obtained using maximum likelihood estimation  and  shown  
to  provide  a  good  fit  to  measured  data. 

In [10], a generalized Laguerre polynomial expansion for 
the probability density function and the cumulative 
distribution function of the sum of independent nonidentically 
distributed squared κ-μ random variables is proposed. Based 
on these statistical results, the performance of maximal-ratio-
combining diversity techniques operating over κ-μ fading 
channels with arbitrary fading parameters are investigated. 
Derived formulas are mathematically tractable and include as 
special cases several results available in the technical 
literature, namely, those of Rice and Nakagami-m fading 
channels. The κ-μ multipath fading channel converts to 
Nakagami-m multipath fading channel for κ=0 and to Rician 
multipath fading channel for μ=1. The κ-μ distribution reduces 
to Rayleigh distribution by setting κ=0 and μ=1.  

 Cochannel interference experiences Gamma shadowed κ-
μ multipath fading. For κ=0, Gamma shadowed κ-μ multipath 
fading channel becomes Gamma shadowed Nakagami-m 
channel, and for μ=1, Gamma shadowed Rician multipath 
fading channel appears from Gamma shadowed κ-μ multipath 
fading channel. For μ=1 and k=0, Gamma shadowed κ-μ 
multipath fading channel get Gamma shadowed Rayleigh 
multipath fading channel. When μ or k goes to infinity, 
Gamma shadowed κ-μ multipath fading channel is pure 
Gamma long term fading channel and when Gamma 
shadowing severity parameter c goes to infinity, pure κ-μ 
multipath fading channel ensues from Gamma shadowed κ-μ 
multipath fading channel. When parameters μ, k and Gamma 
severity parameter c go to infinity, Gamma shadowed κ-μ 
multipath fading channel becomes no fading channel.  

There are many papers in available technical literature, 
dealing with wireless communication system operating over 
Gamma shadowed multipath fading channel and wireless 
system in the presence of short term fading and cochannel 
interference.  

In [11]-[18], wireless communication systems with 
selection combining diversity receiver in the presence of 
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fading and cochannel interference are analyzed. Probability 
density function, cumulative distribution function, outage 
probability and average symbol error probability are 
calculated. 

The wireless communication systems working over 
Weibull multipath channel with SC receiver in the presence of 
cochannel interference affected to Weibull multipath fading 
are evaluated in [11]-[14]. Probability density function, 
cumulative distribution function, moments, outage probability 
and bit error probability for several modulation schemes are 
calculated in these papers.  The level crossing rate of dual SC 
receiver output signal envelope is computed in [13]. 

Macrodiversity system with macrodiversity SC receiver 
and two maximal ratio combining (MRC) receivers operating 
over Gamma shadowed Rician multipath fading channel is 
analyzed in [17]. The expressions for the PDF, cumulative 
distribution function (CDF) and moment generating function 
(MGF) of the output signal-to-noise ratio (SNR) are obtained. 
Also, the moments of the output SNR and outage probability 
are analytically derived. Moreover, the average bit error 
probability (ABEP) for noncoherent binary differential phase-
shift keying (BDPSK) is calculated using the MGF based 
approach while the ABEP for coherent binary phase-shift 
keying (BPSK) is studied by averaging the conditional bit 
error probability over the PDF. 

The paper [18] treats bit error probability (BEP), symbol 
error probability (SEP) and outage probability of MRC in the 
presence of fading. The authors presented fading model, PDF, 
CDF and PDF, CDF and outage probability of the L-branch 
MRC output. BEP/SEP is evaluated for broad class of 
modulation types and for coherent and noncoherent types of 
detection. 

In this work, wireless communication system functioning 
over multipath fading channel in the presence of to cochannel 
interference is considered. Desired signal experiences κ-μ 
short term fading and cochannel interference experiences 
Gamma long term fading and κ-μ short term fading. In 
interference limited environment, the ratio of desired signal 
envelope to interference envelope is important performance 
measure of wireless communication system. For scrutinized 
case, signal to interference ratio can be calculated as the ratio 
of the κ-μ random variable and product of square root of 
Gamma random variable and the κ-μ random variable.  

In this paper, probability density function and moments of 
proposed ratio are determined as expressions in closed form. 
To the best authors’ knowledge, the proposed wireless 
communication system is not reported in open technical 
literature. The obtained results can be used in performance 
analysis and designing of wireless communication systems in 
the presence of long term fading, short term fading and 
cochannel interference.     

II. PROBABILITY DENSITY FUNCTION OF OUTPUT SIGNAL TO 

INTERFERENCE RATIO 

Signal to interference ratio at the output of wireless 

communication system is: 

x
w

y z



.   (1) 

Then, random variable x is: 

x wyz .                       (2) 

The random variable x follows κ-μ distribution [5]: 
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where k≥0 is the ratio between the total power of the dominant 

components and the total power of the scattered waves, µ ≥ 0 

is given by: 
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with r is fading signal envelope; and Iν(.) is the modified 

Bessel function of the first kind and arbitrary order ν (ν real). 

Random variable y is defined as: 

1/2 2 1
1 1, , 2

dy
y y y y y

dy
     (4) 

where y1 is Gamma random variable: 
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with ᴦ(.) being  gamma function [19], [20]. 

Probability density function of y is: 
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Random variable z has κ-μ distribution [5]: 
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The probability density function of w is now: 
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Let us introduce the integral J1 as:  
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Now, let us introduce replacement: 
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In this case, it is valid: 

 

 
2 2 12

2
1 1 2

1

1

k
y s

k w





 


 

,   

 
2 2 1

2
1 1 2

11

2 1

k
ydy ds

k w





 


 
 (11) 

After substituting, the expression (9) becomes: 
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By using the formula [19]: 
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in which  , ,U a b c is Tricomi confluent hypergeometric 

function [21], in integral representation ([19], p. 505), the 

previous written integral obtains the form: 
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After substituting, the expression for PDF is: 
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III. MOMENTS OF SIGNAL TO INTERFERENCE RATIO AT THE 

OUTPUT 

Moment of n-th order of signal to interference ratio at the 

output is:  
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After new substitution, the expression for J2 is obtained 

as: 
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By using the integral [19]: 
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the previous integral is: 
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The function  
2 1

, ; ;F a b c x  is Gauss's hypergeometric 

function [22] and it converges if c is not a negative integer for 

all of 1z   and on the unit circle 1z  , [23]. 

Moment of w is finaly: 
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IV. NUMERICAL RESULTS 

The first moment of w (mean value w ) is given versus 

Rician factor of desired signal k1, Rician factor of interference 
signal k2 and parameter β in the next figures, with different 
parameters of curves, such as Gamma large scale severity 
parameter c and parameter μ.  

In Fig. 1, the main value w  versus Rician factor of desired 

signal k1 is presented for β =0.2, μ=2, Gamma shadowing 
severity parameter c=2 and variable Rician factor of 

interference signal k2. In Fig. 2, the first moment w  is plotted 

versus Rician factor of desired signal k1. The parameters of 
curves are: Rician factor of interference signal k2=0.2, μ=2 and 
c=2. and changeable parameter β. One can see from Fig. 1 that 
the first moment of w increases when Rician factor of desired 
signal, k1, increases. The first moment also is growing up with 
waning of Rician factor of interference signal k2. An 
increment of mean value of w is visible from Fig. 2 for 
reduction of parameter β, whereby the increase is more 
pronounced for larger values of Rician factor of desired signal 
k1. In order to achieve sufficient accuracy, we took into 
account a million of terms in (22) for calculation the moment 
of SIR at the output of wireless communication system. 

 

Fig. 1. Mean value w  versus Rician factor of desired signal k1 for β=0.2, 

μ=2, c=2 and variable Rician factor of interference signal k2. 

 
Fig. 2. The first moment of w versus Rician factor of desired signal k1 for 

c=2, μ=2, k2=0.2,  and changeable parameter β  

 

 
Fig. 3. Mean value w  versus Rician factor of interference signal k2 for c=2,  

μ=2, β=0.2 and changeable Rician factor of desired signal k1. 

 
Fig. 4. Mean value w  versus Rician factor of interference signal k2 for c=2,  

μ=2, k1=1 and variable parameter β. 

 

Mean value w  versus Rician factor of interference signal 

k2 is shown in Figs. 3 and 4. In Fig. 3, the parameters of 
curves are: c=2, μ=2, β=0.2 and modifiable Rician factor of 
desired signal k1. In Fig. 4, the curves are drawn for: c=2, μ=2, 
k1=1and variable parameter β. It is evident from these figures 
that the mean value wanes with increasing of Rician factor of 



interference signal k2. For small values of Rician factor k2, the 
impact of Rician factor of desired signal k1 and parameter β is 
larger. The first moment is getting bigger when Rician factor 
k1 is rising and parameter β is decreasing. 

 

Fig. 5. Mean value w  versus parameter β for c=2, µ=2, Rician factor of 

interference signal k2=0.2, and variable Rician factor of desired signal k1. 

 

Fig. 6. The first moment of w versus parameter β for c=2, µ=2, Rician factor 

of desired signal k1=1 and changeable Rician factor of interference signal k2 

 
Fig. 7. The second moment of w versus Rician factor of desired signal k1 

with parameters c=2 and µ=2, and variable Rician factor of interference signal 

k2 and parameter β. 

 

Fig. 8. The squared average value 
2w  versus Rician factor of interference 

signal k2 for c=2, µ=2, and changeable Rician factor of desired signal k1 and 

parameter β. 

 

Fig. 9. The second moment 2w  versus parameter β for c=2, µ=2 and 

mutable Rician factor of desired signal k1 and Rician factor of interference k2. 

 

The first moment of w versus parameter β is displayed in 
Figs. 5. and 6. Gamma shadowing severity parameter c and κ-
µ distribution parameter µ are equal for all presented cases: 
c=2, µ =2. The Rician factor of desired signal k1 is changeable 
in Fig. 5. and Rician factor of interference signal k2 is varying 
in Fig. 6. It is obvious from these two figures that mean value 

w  is getting smaller with an enlargement of parameter β. One 

can also see that w declines very fast for small β and has 

approximately constant value for the remaining values of the 
parameter β.  

The second moment of w (squared average value 2w ) is 

given versus Rician factor of desired signal k1, Rician factor of 
interference signal k2 and parameter β in Figs. 7 to 9, 
respectively. The parameters of curves are Gamma shadowing 
severity parameter c and parameter μ: c=2, µ=2, as well as 
Rician factor of desired signal k1, Rician factor of interference 
signal k2 and parameter β. 



It is obvious from last three figures that: second moment 
2w  enhances with aggrandizement of Rician factor of desired 

signal k1; decreases with increasing of Rician factor of 
interference signal k2 and parameter β. The greatest impact on 
increasing of squared average value of w has waning of 
parameter β. The influence of parameter β is bigger for higher 
values of Rician factor of desired signal k1. 

V. CONCLUSION 

In this paper, wireless communication system operating 
over multipath fading channel in the presence of cochannel 
interference subjected to shadowed short term fading is 
considered. Desired signal experiences κ-μ short term fading 
and cochannel interference signal experiences Gamma long 
term fading and κ-μ short term fading. 

For this model, desired signal envelope to cochannel 
interference envelope ratio can be calculated as the ratio of the 
κ-μ random variable and product of square rooted Gamma 
random variable and the κ-μ random variable. The closed form 
expression for probability density function and moments of 
proposed signal to interference ratio at the output of 
considered wireless system are calculated. The obtained 
expressions rapidly converge since ten to fifteen terms need to 
be summed to achieve accuracy at fifth significant digit for 
any values of fading parameters. The influence of Rician 
factors of desired signal and cochannel interference and 
Gamma long term fading severity parameter on moments are 
analyzed and discussed.  

By using the obtained expressions, moments of SIR for 
wireless system in the presence of Rician desired signal and 
Gamma shadowed Rician cochannel interference can be 
calculated as special case. The system performance is better 
for higher values of moments. When Rician factor of desired 
signal increases, the first moment and the second moment also 
increase. When Gamma long term fading severity parameter 
decreases, system performance also decreases. 
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