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Abstract—Wireless communication system operating over 

Gamma shadowed Rician short term fading environment in the 

presence of cochannel interference subjected to Rician multipath 

fading is considered in this paper. In interference limited 

channel, signal to interference ratio (SIR) can be presented as 

ratio of product of Rician random variable and squared rooted of 

Gamma random variable and Rician random variable. The 

closed form expression for probability density function, moment 

generating function and moments of output signal to interference 

ratio are efficiently calculated. The influences of Rician factor of 

desired signal, Rician factor of cochannel interference and long 

term fading severity parameter on probability density function 

and moments are analyzed and discussed.   

Keywords—Gamma shadowing; moment generating function; 

moments; probability density function; Rician fading 

I.  INTRODUCTION 

Short term fading, long term fading and cochannel 
interference degrade system performance of wireless 
communication systems and limit channel capacity. 
Reflection, refraction and scattering cause multipath 
propagation resulting in signal envelope variation. Large 
obstacles between transmitter and receiver cause shadowing 
which resulting in signal envelope average power variation. 

There are several statistical models describing signal 
envelope in fading channel where line of sight component 
exists [1]. Rician distribution can be used to describe signal 
envelope variation in homogenous diffuse scattering line of 
sight fading environments [2]. Rician distribution has two 
parameters. Rician factor k is defined as ratio of dominant 
component power and scattering components power. For 
lower values of Rician factor, multipath fading is more severe. 
Rician factor k is lower for higher values of scattering 
components power or for lower values of dominant 
component power. When Rician factor is zero, Rician channel 
becomes Rayleigh fading channel. No fading channel is 
ensued from Rician fading channel when Rician factor goes to 
infinity [3], [4].  

   Long term fading can be presented by using Gamma 
distribution or log-normal distribution. When large scale 
fading is represented with Gamma distribution, performance 
measures of wireless communication system can be obtained 
in the closed form expressions [5], [6]. In this paper, long term 
fading is described by means Gamma statistical model. 

There are a lot of papers in the literature considering 
performance of wireless communication system in the 
presence of small scale fading and cochannel interference and 
also performance of wireless communication system in the 
presence of large scale fading and small scale fading. So, in 
[7]-[9], wireless communication systems using selection 
combining (SC) diversity technique to reduce short term 
fading effects on system performance, in the presence of 
multipath fading and cochannel interference are considered. 
The outage probability and bit error probability, as important 
performance measures, are evaluated in this work. In [10], 
macrodiversity system with macrodiversity SC receiver and 
two microdiversity maximal ratio combining (MRC) receivers 
operating over Gamma shadowed Nakagami-m short term 
fading channel is analyzed. Level crossing rate and average 
fade duration, as the second order performance measures, of 
proposed system are efficiently calculated. 

In this paper, wireless communication system under the 
presence of short term fading, long term fading and cochannel 
interference is investigated. Desired signal experiences Rician 
short term fading, Gamma long term fading and cochannel 
interference subjected to multipath Rician fading. Desired 
signal envelope can be written as product of squared rooted 
Gamma random variable and Rician variable. 

The important performance measure of wireless 
communication system is signal to interference ratio. For 
considered wireless system, the ratio of signal envelope and 
interference envelope can be computed as ratio of product of 
squared rooted Gamma random variable and Rician random 
variable and Rician random variable. Probability density 
function, moment generating function and moments of actual 
ratio are evaluated as expressions in the closed form. The 
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expression for probability density function of output SIR can 
be used for calculation of the outage probability and bit error 
probability of considered wireless communication system.        

II. PERFORMANCE OF WIRELESS COMMUNICATION SYSTEM 

A. Probability density function 

Desired signal envelope can be written as product of two 

random variables x and y: 

1z x y  ,   with 1/2
1x x , 2

1x x .        (1) 

x1 is Gamma long term fading with probability density 

function (PDF) [4]: 
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c is the order of Gamma distribution; β is related to the 
average power. The lower value of c means the higher 
shadowing, while the value of c=∞ corresponds to a pure
short-term fading channel [11].  

Probability density function of x is: 
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Random variable y represents short term fading and has 
Rician distribution [2]: 
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The cochannel interference envelope follows Rician 

distribution: 
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The ratio of desired signal envelope to cochannel 

interference envelope is: 

1z x y
w

z z


     ,

wz dx z
x

y dw y
    (6) 

Conditional probability density function of w is: 

 / ,w x x

dx wz z wz
p w y z p p

dw y y y

   
    

   

          (7) 

Probability density function of ratio of product of Rician 

random variable and squared Gamma random variable and 

Rician random variable can be calculated by averaging 

previous expression: 
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After substituting, the expression for pw(w) becomes: 
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The integral J1 is: 
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Let is valid: 
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After substituting, the expression for integral J1 becomes: 
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By using the formula [12]: 
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where  a  is  gamma function [13], and  , ,U a b c is Tricomi 

confluent hypergeometric function [14] or confluent 

hypergeometric Kummer U function, previous integral 

becomes: 
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By putting (14) in (9), the expression pw(w) becomes: 
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The confluent hypergeometric function of the second kind 

gives the second linearly independent solution to the confluent 

hypergeometric differential equation. It is also known as the 

Kummer's function of the second kind, Tricomi function, or 

Gordon function. It is denoted  , ,U a b c and can be defined by 
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where  1 1 ; ;F a b c  is a regularized confluent hypergeometric 

function of the first kind [12, Eq.(9.210/1)],  a  is a gamma 

function, and  2 1 ; ;F a b c  is a generalized hypergeometric 

function ([3], p. 504). 

It has an integral representation ([3], p. 505) 
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which we used in (13). 

B. Moment of n-th order 

Moment of n-th order of w is:  
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Let it be now: 
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Behind this substitution, moment of n-th order of w 

becomes:  
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By using the next formula: 
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where  
2 1

, , ;F a b c z is Gauss hypergeometric function [15], 

previous expression obtains the form: 
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A generalized hypergeometric function 

 1 1,..., ; ,..., ;p qp q
F a a b b x is a function which can be defined in the 

form of a hypergeometric series, i.e., a series for which the 

ratio of successive terms can be written: 
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The function  
2 1

, ; ;F a b c x  corresponding to p=2, q=1 is 

the first hypergeometric function to be studied and, in general, 

arises the most frequently in physical problems. It is 

frequently known as "the" hypergeometric equation or, more 

explicitly, Gauss's hypergeometric function (Gauss 1812, 

Barnes 1908). 

The so-called regular solution is denoted by: 

 
   

 
   

 
2

2 1
0

1 1
, ; ; 1 ,

1! 2! 1 !

n
n n

n n

a a b b a bab z
F a b c z z z

c c c nc





 
       


  

and converges if c is not a negative integer for all of 1z   and 

on the unit circle 1z  if   0R c a b   . Here,  
n

a  is a 

Pochhammer symbol [15], [16].  

C. Moment generating function 

Moment generating function (MGF) of w is: 
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By using the formula: 
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the expression (20) ensues: 
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III. NUMERICAL RESULTS 

In the next few figures the first moment of w is given 
versus Rician factor of desired signal, Rician factor of 

interference signal and Gamma large scale severity parameter. 
We took into account a million of series' terms for calculation 
the system performance in order to achieve sufficient 
accuracy. 

In Fig. 1, the mean value w  versus Rician factor of desired 

signal k1 is presented for parameter β=0.2, Gamma shadowing 
severity parameter c=2 and variable Rician factor of 

interference signal k2. In Fig. 2, the first moment w  is plotted 

versus Rician factor of desired signal k1. The parameters of 
curves are: Gamma shadowing severity parameter c=2, Rician 
factor of interference signal k2=0.2 and parameter β is 
changeable.  

One can see from Fig. 1 that the first moment of w 
increases when Rician factor of desired signal, k1, increases. 
The first moment also is growing up with lowering of Rician 
factor of interference signal k2. An increasing of mean value 

w  is visible from Fig. 2 for enlarging of parameter β. The 

influence of parameter β is bigger for higher values of Rician 
factor of interference signal k2. 

 

Fig. 1. Mean value w  versus Rician factor of desired signal k1 for β=0.2, 

Gamma shadowing severity parameter c=2 and variable Rician factor of 

interference signal k2  

 

Fig. 2. Mean value w  versus Rician factor of desired signal k1 for c=2,  

Rician factor of interference signal k2=0.2 and changeable parameter β 
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Fig. 3. Mean value w  versus Rician factor of interference signal k2 for 

β=0.2, c=2 and variable Rician factor of desired signal k1  

 

Fig. 4. Mean value w  versus Rician factor of interference signal k2 for c=2, 

Rician factor of desired signal k1=1 and variable parameter β 

 

Fig. 5. The first moment of w versus parameter β for c=2, Rician factor of 

interference signal k2=0.2 and changeable Rician factor of desired signal k1 

 

Fig. 6. The first moment of w versus parameter β for c=2, Rician factor of 

desired signal k1=1 and variable Rician factor of interference signal k2 

Mean value w  versus Rician factor of interference signal k2 

is shown in Figs. 3 and 4. In Fig. 3, the parameters of curves 
are: β=0.2, c=2 and variable Rician factor of desired signal k1. 
In Fig. 4, the curves are drawn for: c=2, Rician factor of 
desired signal k1=1 and variable parameter β. It is obvious 
from these two figures that the mean value decreases with 
increasing of Rician factor of interference signal k2. For 
smaller values of Rician factor k2, the influences of Rician 
factor of desired signal k1 and parameter β are bigger. The first 
moment rises when Rician factor k1 and parameter β are rising. 

The first moment of w versus parameter β is plotted in 
Figs. 5. and 6. with constant Gamma shadowing severity 
parameter c=2. The Rician factor of desired signal k1 is 
declinable in Fig. 5. and Rician factor of interference signal k2 
is mutable in Fig. 6. 

It is visible from these two figures that mean value w  is 

getting bigger with an aggrandizement of parameter β. One 
can also notice that a greater impact on the growth of w  has an 

increasing of Ricean factor k1 for for large values of parameter 
β. 

IV. CONCLUSION 

In this paper, wireless mobile radio communication system 
in the presence of Gamma large scale fading, Rician small 
scale fading and cochannel interference is examined. In 
interference limited environment, where level of cochannel 
interference is significantly higher than Gaussian noise, signal 
to interference ratio is important system measure. In observed 
wireless communication system signal to interference ratio can 
be calculated as a ratio of product of squared rooted Gamma 
random variable and Rician random variable and Rician 
random variable.  

Also, in this paper, the closed form expressions for 
probability density function, moment generating function and 
moments of output SIR are determined. Probability density 
function can be used for evaluation the channel capacity, the 



bit error probability and the outage probability of proposed 
wireless system. 

Using determined expressions, probability density 
function, moment generating function and moments of 
wireless system in the presence of Rayleigh multipath fading, 
Gamma long term fading and Rayleigh interference can be 
reckoned putting Rician factor to be zero. The influence of 
Rician factor of desired signal, Rician factor of interference 
signal and Gamma large scale severity parameter on mean 
average values is analyzed. The outage probability and error 
performance are better for higher values of the first moment 
and second moment.  

Results obtained in this work could be used in performance 
analysis and designing of wireless communication systems in 
the presence of Rician multipath fading, Gamma shadowing 
and cochannel interference affected to Rician multipath 
fading.  
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