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Abstract—Wireless communication system operating over
Gamma shadowed Rician short term fading environment in the
presence of cochannel interference subjected to Rician multipath
fading is considered in this paper. In interference limited
channel, signal to interference ratio (SIR) can be presented as
ratio of product of Rician random variable and squared rooted of
Gamma random variable and Rician random variable. The
closed form expression for probability density function, moment
generating function and moments of output signal to interference
ratio are efficiently calculated. The influences of Rician factor of
desired signal, Rician factor of cochannel interference and long
term fading severity parameter on probability density function
and moments are analyzed and discussed.
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I. INTRODUCTION
Short term fading, long term fading and cochannel

interference degrade system performance of wireless
communication systems and limit channel capacity.
Reflection, refraction and scattering cause multipath

propagation resulting in signal envelope variation. Large
obstacles between transmitter and receiver cause shadowing
which resulting in signal envelope average power variation.

There are several statistical models describing signal
envelope in fading channel where line of sight component
exists [1]. Rician distribution can be used to describe signal
envelope variation in homogenous diffuse scattering line of
sight fading environments [2]. Rician distribution has two
parameters. Rician factor k is defined as ratio of dominant
component power and scattering components power. For
lower values of Rician factor, multipath fading is more severe.
Rician factor k is lower for higher values of scattering
components power or for lower values of dominant
component power. When Rician factor is zero, Rician channel
becomes Rayleigh fading channel. No fading channel is
ensued from Rician fading channel when Rician factor goes to
infinity [3], [4].
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Long term fading can be presented by using Gamma
distribution or log-normal distribution. When large scale
fading is represented with Gamma distribution, performance
measures of wireless communication system can be obtained
in the closed form expressions [5], [6]. In this paper, long term
fading is described by means Gamma statistical model.

There are a lot of papers in the literature considering
performance of wireless communication system in the
presence of small scale fading and cochannel interference and
also performance of wireless communication system in the
presence of large scale fading and small scale fading. So, in
[71-[9], wireless communication systems using selection
combining (SC) diversity technique to reduce short term
fading effects on system performance, in the presence of
multipath fading and cochannel interference are considered.
The outage probability and bit error probability, as important
performance measures, are evaluated in this work. In [10],
macrodiversity system with macrodiversity SC receiver and
two microdiversity maximal ratio combining (MRC) receivers
operating over Gamma shadowed Nakagami-m short term
fading channel is analyzed. Level crossing rate and average
fade duration, as the second order performance measures, of
proposed system are efficiently calculated.

In this paper, wireless communication system under the
presence of short term fading, long term fading and cochannel
interference is investigated. Desired signal experiences Rician
short term fading, Gamma long term fading and cochannel
interference subjected to multipath Rician fading. Desired
signal envelope can be written as product of squared rooted
Gamma random variable and Rician variable.

The important performance measure of wireless
communication system is signal to interference ratio. For
considered wireless system, the ratio of signal envelope and
interference envelope can be computed as ratio of product of
squared rooted Gamma random variable and Rician random
variable and Rician random variable. Probability density
function, moment generating function and moments of actual
ratio are evaluated as expressions in the closed form. The
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expression for probability density function of output SIR can
be used for calculation of the outage probability and bit error
probability of considered wireless communication system.

Il. PERFORMANCE OF WIRELESS COMMUNICATION SYSTEM

A. Probability density function

Desired signal envelope can be written as product of two
random variables x and y:
z=x-y, with x=x'2, % =x, 1)
Xy is Gamma long term fading with probability density
function (PDF) [4]:
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c is the order of Gamma distribution; /£ is related to the
average power. The lower value of ¢ means the higher
shadowing, while the value of c=0o corresponds to a pure
short-term fading channel [11].

Probability density function of x is:
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Random variable y represents short term fading and has
Rician distribution [2]:
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The cochannel interference envelope follows Rician
distribution:

e
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The ratio of desired signal envelope to cochannel
interference envelope is:
a_Xy o wo ox_z (6)
z z y dw vy

Conditional probability density function of w is:
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Probability density function of ratio of product of Rician
random variable and squared Gamma random variable and
Rician random variable can be calculated by averaging
previous expression:
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After substituting, the expression for p,,(w) becomes:
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After substituting, the expression for integral J, becomes:

dt (11)
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By using the formula [12]:

jdtta‘l e ¢ ﬁ =I'(a)u(ab,c), (13)
(1+t)

where T'(a) is gamma function [13], and U (a,b,c) is Tricomi

confluent hypergeometric function [14] or confluent

hypergeometric Kummer U function, previous integral

becomes:
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By putting (14) in (9), the expression p,,(w) becomes:
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The confluent hypergeometric function of the second kind
gives the second linearly independent solution to the confluent
hypergeometric differential equation. It is also known as the
Kummer's function of the second kind, Tricomi function, or
Gordon function. It is denoted U (a,b,c)and can be defined by
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where 1Fl(a; b;c) is a regularized confluent hypergeometric

function of the first kind [12, Eq.(9.210/1)], I'(a) is a gamma
function, and 2Fl(a;b;c) is a generalized hypergeometric
function ([3], p. 504).

It has an integral representation ([3], p. 505)
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which we used in (13).

B. Moment of n-th order
Moment of n-th order of w is:
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By using the next formula:
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where ,F (a,b,c;Z) is Gauss hypergeometric function [15],
previous expression obtains the form:
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A generalized hypergeometric function

oFy (al ..... ap;bl,...,bq;x) is a function which can be defined in the

form of a hypergeometric series, i.e., a series for which the
ratio of successive terms can be written:
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The function ,F (ab;c;x) corresponding to p=2, q=1 is
the first hypergeometric function to be studied and, in general,
arises the most frequently in physical problems. It is
frequently known as "the" hypergeometric equation or, more
explicitly, Gauss's hypergeometric function (Gauss 1812,
Barnes 1908).

The so-called regular solution is denoted by:

. ab  a(a+l)b(b+1) ,
F (a,b,c,z)_1+mz+72!0(c+l) z+
and converges if ¢ is not a negative integer for all of |z| <1 and
on the unit circle |7|=1if R[c—a-b]>0. Here, (a), is a
Pochhammer symbol [15], [16].

C. Moment generating function
Moment generating function (MGF) of w is:
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1. NUMERICAL RESULTS

In the next few figures the first moment of w is given
versus Rician factor of desired signal, Rician factor of

interference signal and Gamma large scale severity parameter.
We took into account a million of series' terms for calculation
the system performance in order to achieve sufficient
accuracy.

In Fig. 1, the mean value w versus Rician factor of desired
signal k; is presented for parameter £=0.2, Gamma shadowing
severity parameter c¢c=2 and variable Rician factor of

interference signal k,. In Fig. 2, the first moment w is plotted
versus Rician factor of desired signal k;. The parameters of
curves are: Gamma shadowing severity parameter c=2, Rician
factor of interference signal k,=0.2 and parameter f is
changeable.

One can see from Fig. 1 that the first moment of w
increases when Rician factor of desired signal, k;, increases.
The first moment also is growing up with lowering of Rician
factor of interference signal k,. An increasing of mean value

w is visible from Fig. 2 for enlarging of parameter 5. The
influence of parameter S is bigger for higher values of Rician
factor of interference signal k,.
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Fig. 1. Mean value w versus Rician factor of desired signal k; for $=0.2,
Gamma shadowing severity parameter c=2 and variable Rician factor of
interference signal k,
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Fig. 2. Mean value w versus Rician factor of desired signal k; for c=2,
Rician factor of interference signal k,=0.2 and changeable parameter g
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Fig. 3. Mean value w versus Rician factor of interference signal k., for
$=0.2, c=2 and variable Rician factor of desired signal k;

'"v' —=— =2, k=1, B=0.2
4 % —e—c=2,k,=1. =04
4 "! A—c=2, k=1, B=0.6
v — - . - R
A‘ v v—c=2,k,=1, =08
A v
‘ Gi A v
= boo, ' V'
3 ‘.. A Ty
% A‘ Vv,
L v,
| . ta,
e
e,
1~'\"-\__..‘-
T 7 3 7

Fig. 4. Mean value w versus Rician factor of interference signal k, for c=2,
Rician factor of desired signal k;=1 and variable parameter g
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Fig. 5. The first moment of w versus parameter  for c=2, Rician factor of
interference signal k,=0.2 and changeable Rician factor of desired signal k;
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Fig. 6. The first moment of w versus parameter g for c=2, Rician factor of
desired signal k;=1 and variable Rician factor of interference signal k,

Mean value w versus Rician factor of interference signal k»
is shown in Figs. 3 and 4. In Fig. 3, the parameters of curves
are: f=0.2, c=2 and variable Rician factor of desired signal k;.
In Fig. 4, the curves are drawn for: ¢=2, Rician factor of
desired signal k;=1 and variable parameter §. It is obvious
from these two figures that the mean value decreases with
increasing of Rician factor of interference signal k,. For
smaller values of Rician factor k,, the influences of Rician
factor of desired signal k; and parameter f are bigger. The first
moment rises when Rician factor k; and parameter (3 are rising.

The first moment of w versus parameter £ is plotted in
Figs. 5. and 6. with constant Gamma shadowing severity
parameter c=2. The Rician factor of desired signal k; is
declinable in Fig. 5. and Rician factor of interference signal k;
is mutable in Fig. 6.

It is visible from these two figures that mean value w is
getting bigger with an aggrandizement of parameter 5. One
can also notice that a greater impact on the growth of w has an
increasing of Ricean factor k; for for large values of parameter

p.

IV. CONCLUSION

In this paper, wireless mobile radio communication system
in the presence of Gamma large scale fading, Rician small
scale fading and cochannel interference is examined. In
interference limited environment, where level of cochannel
interference is significantly higher than Gaussian noise, signal
to interference ratio is important system measure. In observed
wireless communication system signal to interference ratio can
be calculated as a ratio of product of squared rooted Gamma
random variable and Rician random variable and Rician
random variable.

Also, in this paper, the closed form expressions for
probability density function, moment generating function and
moments of output SIR are determined. Probability density
function can be used for evaluation the channel capacity, the



bit error probability and the outage probability of proposed
wireless system.

Using determined expressions, probability density
function, moment generating function and moments of
wireless system in the presence of Rayleigh multipath fading,
Gamma long term fading and Rayleigh interference can be
reckoned putting Rician factor to be zero. The influence of
Rician factor of desired signal, Rician factor of interference
signal and Gamma large scale severity parameter on mean
average values is analyzed. The outage probability and error
performance are better for higher values of the first moment
and second moment.

Results obtained in this work could be used in performance
analysis and designing of wireless communication systems in
the presence of Rician multipath fading, Gamma shadowing
and cochannel interference affected to Rician multipath
fading.
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