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Abstract—The neural representation of spatially contin-

uous information such as orientation, head direction, and

spatial location is widely modeled as population activities

in continuous attractor neural networks (CANNs). We in-

vestigate how short-term synaptic depression (STD) can re-

shape the intrinsic dynamics of the CANN model and its

responses to external inputs. We find that weak STD en-

hances the mobility of population activities, while strong

STD induces population spikes. Other complex behaviors

may have the potential to provide a repertoire of dynamical

representations in the neural system.

1. Introduction

To understand how information is encoded in the brain,

it is crucial to consider the range of firing patterns and their

conditions of occurrence [1]. In the processing of contin-

uous information such as object orientation and spatial lo-

cation, firing patterns are found to be localized in the space

of preferred stimuli of the neurons, normally taking up a

Gaussian-like profile [2, 3]. Thus an interesting question is

whether these profiles are stable in time and in space and,

if not, what other dynamical states will replace them.

In neural field models processing continuous informa-

tion, Gaussian-like tuning curves are steady states of the

network dynamics, and remain stable when their positions

are displaced in the space of the preferred stimuli of the

neurons. These neural field models are called continuous

attractor neural networks (CANNs). The ability to sup-

port these Gaussian-like bump attractors is effected by cou-

plings between neurons in CANNs. However, in reality,

couplings between neurons are not quenched. They de-

pend on firing histories of presynaptic neurons. Tsodyks

et al. found that synaptic efficacy decreases with firing his-

tory [4, 5]. Furthermore, they proposed that this decline

in synaptic efficacy is due to the slow dynamics of the re-

covery process of neurotransmitters. The recovery of neu-

rotransmitters is of the order of 100 ms. This short-term

decline in synaptic efficacy is called short-term synaptic

depression (STD).

2. Intrinsic behaviors

N neurons are evenly distributed in the space of preferred

stimuli (in the following simulation results, N = 256).

Neurons are labeled by their preferred stimulus x. The

range of {x} is (−L/2, L/2]. So the size of the space is L.

Since usually the model is applied to the representation of

directions or orientations, L = 2π and the periodic bound-

ary condition is imposed. We modify the general form of

neural field theory and formulate the intrinsic dynamics of

the neuronal input U(x, t) as [6, 2, 7, 8]

τs
∂U(x, t)

∂t
=

∫ L/2

−L/2
dx′J(x, x′)p(x′, t)r(x′, t)

− U(x, t) + I(x, t), (1)

where τs is the synaptic time constant, I(x, t) is the external

stimulus, J(x, x′) is the coupling strength between neurons

with preferred stimuli x and x′, and r(x′, t) is the firing rate

of neuron x′ at time t. They are given by

J(x, x′) =
1
√
2πa

exp

(

−‖x − x′‖2

2a2

)

, (2)

r(x, t) =
[U(x, t)]2+

1 + k

8
√
2πa

∫

dx′[U(x′, t)]2+
. (3)

where k is the strength of the global inhibition, [X]+ ≡
max(X, 0) and ‖X‖ ≡ min(|X|, L − |X|). Here we adopt a

Gaussian coupling and incorporate inhibitory connections

into the global inhibition.

p(x, t) is the availability of neurotransmitters in neuron

x. The dynamics of p(x, t) is given by

τd
∂p(x, t)

∂t
= 1 − p(x, t) − βp(x, t)r(x, t), (4)

where τd is the time scale of neurotransmitter recovery,

which is chosen to be τd = 50τs. β is the fraction of to-

tal neurotransmitters consumed by firing per spike.

In the absence of external inputs (I(x, t) = 0), a va-

riety of interesting behaviors have been discovered, such

as the static bump, the moving bump and the silent state

2015 International Symposium on Nonlinear Theory and its Applications
NOLTA2015, Kowloon, Hong Kong, China, December 1-4, 2015

- 333 -



(b)

t/τs
0 250 500

(c)

t/τs
0 250 500

0

1

2

3

4

5

x

(a)

t/τs
0 250 500

-π

0

π

Figure 1: Intrinsic Behaviors. The color scale shows

U(x, t). (a) Silent state. Parameters: k = 0.8, β = 0.2.

(b) Static bump. Parameters: k = 0.8, β = 0.005. (c) Mov-

ing bump. Parameters: k = 0.8, β = 0.05. For all (a)-(c),

a = 0.6.
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Figure 2: Four basic dynamic responses to a single static

input in CANN with STD. The color (gray) scale shows the

firing rate r(x, t). (a) Emitter. Parameters: k = 0.2, β = 0.3.

(b) Population spikes. Parameters: k = 0.3, β = 0.4. (c)

Moving bump. Parameters: k = 0.3, β = 0.1. (d) Slosher.

Parameters: k = 0.5, β = 0.1. For all (a)-(d), A = 0.8,

a = aA = 48◦ = 0.8378.

(Fig. 1(a)-(c), see also [8]). The static bump state, also

known as a persistent spatially localized activity state [9], is

of interest because it can be found in physiological record-

ings in the prefrontal cortex during spatial working mem-

ory tasks and other systems that encode directional or spa-

tial information. The moving bump state corresponds to

traveling waves which have been extensively studied exper-

imentally [10, 11, 12] and theoretically [13, 14, 15, 16, 17].

In our model, neurotransmitters are depleted at the bump’s

position due to the STD. Thus, the bump tends to move

away to regions where neurotransmitters are more avail-

able.

3. Responses to a single static input

In this section, we will discuss the network behavior in

the presence of a single static input and moderate global

inhibition. For the external input in Eq. (1), we adopt the

form I(x, t) = A exp[−(x − z)2/(2a2
A
)], where z is the center

of that input (without loss of generality, z = 0 in this work),

A is the strength of the input, and aA is the width of the in-

put. Note that the behavior of this system is controlled by

three parameters, namely the strength of the global inhibi-

tion k, the strength of the STD β and the strength of the

external input A. In this work, different response patterns

are discussed in the parameter space spanned by these three

quantities.

3.1. Four Basic Dynamic Response Patterns

The static bump is expected to be the simplest form of

response. However, in a very large region of the parameter

space, static bumps are unstable and much more interesting

response patterns emerge. Among them, there are four ba-

sic dynamic patterns through which we can understand the

general property of this system (Fig. 2(a)-(d)).

One response pattern is the moving bump. Moving

bumps result from the mobility of the neural field enhanced

by the STD. Once a bump is built, neurotransmitters are

depleted in the bump region, leading to a tendency of the

bump to move away to fresher regions. As an intrinsic be-

havior, the moving bump will keep its profile and its speed

all the time (Fig. 1(c)). However, while the static input is

imposed, the speed and profile of the bump will change

when the bump crosses the input. The bump is higher and

faster when approaching to the input, while weaker and

slower when leaving the input, because the external input

tends to attract the bump (Fig. 2(c)).

When the attraction provided by the external input is

strong and the mobility enhanced by the STD is not suf-

ficient for the bump to overcome the attraction of the input,

the bump gets trapped and moves side-to-side around the

external input. It is called a slosher (Fig. 2(d)) [18].

In both cases of the moving bump and the slosher, the

dynamics are governed by the mobility enhanced by the

STD and the attraction provided by the external input. The

amplitude of the bump does not change significantly dur-

ing its movement. However, when β and A are sufficiently

large, the effect of the STD is not just mobility enhance-

ment, but also amplitude modulation. Large β and Ameans

that the bump will consume more neurotransmitters so that

it cannot maintain its amplitude all the time. The emit-

ter (Fig. 2(a)) is an example in such case. One moving

bump is emitted by the external input. After it travels

around the network, the bump dies down due to the ex-

cessive consumption of neurotransmitters during traveling.

Then, the network waits a while until sufficient amount

of neurotransmitters is recovered to support another emis-

sion of the moving bump. When the external input is even

stronger, we see a similar response, namely, population

spikes (Fig. 2(b)), in which case a static bump, rather than a

branch of moving bump, is emitted after recovery, since the

external input is so strong that the bump is trapped [19, 20].
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Figure 3: Phase diagrams for the four basic responses in

the space of k and β with different values of A. a = 0.5 and

aA =
√
2/2.

We explore the four basic dynamic responses in the pa-

rameter space of k and β with different values of A (Fig. 3).

When the input is weak (Fig. 3(a) and (b)), sloshers appear

between the moving bump region and the static bump re-

gion. This is because the mobility enhanced by the STD

is not enough to delocalize the bump, which is attracted by

the static input. When the input is strong (Fig. 3(c) and

(d)), the consumption of neurotransmitters is so fast that

the bump cannot keep its amplitude stable. This results in

the emergence of the emitter and population spikes.

3.2. Mixture Behaviors

In numerical solutions, we find that in a large part of the

parameter space, response patterns can be none of the four

basic patterns and very complex. They seem to be differ-

ent mixtures of the four basic dynamic patterns. Relations

between different mixture behaviors can be understood sys-

tematically by monitoring the period of asymptotic states.

Thus, we can show how different mixture behaviors are or-

ganized in the phase diagram (Figs. 4).

For the full model simulation (Fig. 4), where the num-

ber of neurons is 256, Eqs. (1)-(4) are solved by using the

MATLAB command ode45 and the period is determined

by examining the auto-correlation function of asymptotic

states.

In the phase diagram, there are many patches within

which the period of the dynamics changes continuously.

However, the period jumps abruptly across boundaries of

the patches. This indicates that behaviors are similar within

each patch, while transitions happen across boundaries. In

the gray region along phase boundaries, different dynam-

ics can be found by starting with initial conditions from

different sides of the boundaries. The four basic dynamic

response patterns are located at the four disjoint regions

of the phase diagram. In between them, there is a rich

spectrum of different mixture behaviors. Especially, black

dots, where the length of the period is too long to be well

determined within a time limit, are found in the mixture

behavior region, which may imply chaos. Largest Lya-

punov exponents are computed in regions containing black

dots (Fig. 5). Positive exponents exist extensively around

β = 0.2, which clearly demonstrates the existence of chaos

in this strongly coupled neural field.

Having explored the phase diagrams in different situa-

tions, we find that the parameter space can be separated

into two parts. The upper part where β is larger consists of

emitters, population spikes and their mixtures. The lower

part where β is smaller consists of moving bumps, slosh-

ers and their mixtures. Between these two parts around

β = 0.2, responses tend to have very long period and show

chaotic features. We may conclude that short-term synaptic

depression have different effects depending on its strength.

Weak STD enhances the mobility of the bump without

affecting the amplitude of the bump significantly, leading

to bumps of relatively stable amplitude and varying posi-

tion. This is the spatial modulation effect of the STD. On

the other hand, strong STD disrupts the bump in time, since

neurotransmitters are depleted rapidly during the spikes.

This shows the temporal modulation effect of the STD.

Bumps in the time sequence generally are not the same,

implying a possibility to encode different information in

different emissions, an example having been discussed in

detail in [21].

Figure 4: Phase diagram in the space of A and β. The color

scale indicates lengths of the periods in log scale. Black

dots mean the period of the response is longer than 5000τs.

The global inhibition strength k = 0.3. a = aA = 0.8378.

M, E, P and S represent “moving bump”, “emitter”, “popu-

lation spikes” and “slosher”, respectively. The gray regions

are bistable regions where the lengths of the periods can be

either of two different values. The box encircles the re-

gion where largest Lyapunov exponents are computed and

shown in Fig. 5.
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4. Discussion

We have found that the STD enriches the responses of

the CANN model in the presence of a single static in-

put, including four basic patterns of dynamic responses

and their mixtures. When STD is weak (lower than 0.2,

roughly), it mainly provides spatial modulation, or in other

words, enhances the mobility of the bump. Inputs of differ-

ent strengths provide different attraction, leading to mov-

ing bumps, sloshers or mixtures of them. When STD

is strong, STD provides temporal modulation along with

spatial modulation. Together with the static external in-

put, they results in emitters, population spikes, or mixtures

of them. Detailed examples of mixture behaviors can be

found in [23]. In the parameter region where STD strength

is intermediate, chaotic behaviors appear. Although it is not

fully understood, we believe that the involvement of both

temporal and spatial modulation of STD is the major cause

of complexity in that region.

Our work shows that even a recurrent network with a

highly regular structure can support extremely complex dy-

namics and chaos, in the presence of short-term synaptic

plasticity. A rich spectrum of dynamical behaviors can be

readily found and understood near the edge of chaos. How

to tap into the potential computational power of CANNs

with STD is an interesting problem to be investigated in

the future.
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Figure 5: Largest Lyapunov exponents (LLE). The blank

region contains periodic behaviors. Parameters are the

same as those in Fig. 4.
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