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Abstract—Many systems of interest in physics, biology
or social science are complex networks. The links, their
direction and weights or relative coupling strength of a net-
work are important features that provide insights and fun-
damental understanding of the overall behavior and func-
tionality of the network. Thus a method that can extract
such information from measurements would be valuable.
In this paper, we focus on weighted bidirectional networks,
modeled by a dynamical system and subjected to a Gaus-
sian white noise that mimics the effect of external distur-
bances. We show that general mathematical results relat-
ing the adjacency matrix of the network and the time-series
measurements of the nodes can be obtained. Based on these
results, we have developed a method that reconstructs both
the links and their relative coupling strength using only the
time-series measurements of node dynamics as input. We
demonstrate that our method can give accurate results for
unweighted and weighted random and scale-free networks
with linear and nonlinear dynamics. We further show why
relevance networks constructed using Pearson correlation
coefficient and partial correlation coefficient can have sig-
nifican deviations from the actual network.

1. Introduction

Many multi-component systems of interest in physics,
biology or social science are complex networks with the
components being the nodes or vertices and the interactions
between components being the links or edges [1, 2, 3]. The
links and their weights or relative coupling strength are im-
portant basic features of a network that provides insights
and fundamental understanding of the overall behavior and
functionality of the network. A vast amount of data has
been measured for various networks of interest like gene
regulatory network [4, 5] and brain network [6] but it re-
mains a great challenge to reconstruct a network from mea-
surements. All existing methods of network reconstruction
have their limitations [7, 8]. In this paper, we focus on
weighted bidirectional networks, modeled by a dynamical
system and subjected to a Gaussian white noise that mimics
the effect of external disturbances. We show that general
mathematical results relating the adjacency matrix of the
network and the time-series measurements of the nodes can
be obtained. Based on these mathematical results, we have
developed a method that reconstructs both the links and

their relative coupling strength using only the time-series
measurements of node dynamics as input. We demonstrate
that our method can give accurate results for unweighted
and weighted random and scale-free networks with linear
and nonlinear dynamics. We further show why relevance
networks constructed using Pearson correlation coefficient
and partial correlation coefficient can have significan devi-
ations from the actual network.

2. Our Method

We consider bidirectional weighted networks of N
nodes, each with a variable xi(t), obeying the evolution
equations

ẋi = f (xi) +
∑
j�i
gi jAi jh(xi, x j) + ηi , i = 1, 2, . . . ,N .

(1)
Here, an overdot denotes derivative with respect to time t,
and f describes the intrinsic dynamics, which is taken to
be identical for all nodes. The adjacency matrix element
Ai j is 1 when node j is linked to node i by the coupling
function h(xi, x j) with strength gi j; otherwise Ai j = gi j =
0. The coupling is bidirectional such that Ai j = Aji and
gi j = g ji. The effect of external disturbance is modeled by
a Gaussian white noise ηi with zero mean and variance σ2:
ηi(t)η j(t′) = σ2δi jδ(t − t′), where the overbar denotes an
average over different realizations of the noise. We assume
no self-loops such that Aii ≡ 0. and focus on coupling
function that satisfie

h(x, y) = h(z = y − x) ; h(−z) = −h(z) ; h′(0) > 0 . (2)

With such a coupling function, the dynamics of the nodes
tend to synchronize such that xi’s approach a stable fi ed
point X0 in the noise-free limit given by f (X0) = 0 and
f ′(X0) < 0. In the presence of weak noise, δxi = xi − X0 is
small and we have

δ̇xi ≈ −
N∑
j=1

[
h′(0)Li j − f ′(X0)δi j

]
δx j + ηi , (3)

where L is the Laplacian matrix of a weighted network
given by

Li j = si − gi jAi j, si ≡
N∑
j=1
gi jAi j (4)
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and si is the strength of node i.
We defin the dynamical covariance matrix C̃ by

C̃i j(t) ≡ [xi(t) − X(t)][x j(t) − X(t)] (5)

where X(t) ≡ (1/N)
∑N
i=1 xi(t). It is easy to see that C̃i j(t)

is equal to [δxi(t) − δX(t)][δx j(t) − δX(t)] with δX(t) ≡
(1/N)

∑N
i=1 δxi(t). Using Eq. (3), we have derived [9, 10]

an exact relation between C̃+ and L for the linearized sys-
tem:

σ2

2
lim
t→∞ C̃

+ = h′(0)L − f ′(X0)
(
I − 1

N
J
)
, (6)

which is an approximation for the original system. Here,
the superscript + denotes the pseudoinverse of a matrix and
J is an N × N matrix whose elements are all equal to one.
Based on Eq. (6), we are able to develop [9, 10] a method
that reconstructs Ai j and the normalized coupling strength
Gi j ≡ gi j/〈g〉, where 〈g〉 ≡ ∑

i, j gi jAi j/
∑
i, j Ai j is the aver-

age coupling strength. For stationary time-series measure-
ments, we approximate the ensemble average over noise by
a long-time average:

lim
t→∞ C̃i j(t) ≈ Ci j(T ) ≡ 〈[xi(t) − X(t)][x j(t) − X(t)]〉T , (7)

where 〈. . . 〉T denotes an average over a time interval T
of the measurements. We emphasize that Ci j(T ) can be
calculated using only the time-series measurements xi(t),
i = 1, . . . ,N. Using Eq. (6), we then obtain

ri j ≡
C +i j
C+ii
≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−gi j

si − f ′(X0)/h′(0) , Ai j = 1

0, Ai j = 0
, i � j

(8)
where we have neglected the 1/N term for large networks.
For each node i, the values of ri j form two groups, one
for nodes j that are unconnected to node i, and the other
for nodes j connected to node i. By identifying these
two groups [10], we obtain the reconstructed A(e)i j . More-
over, Eq. (6) together with Eq. (7) imply that for i � j,
−(σ2/2)C+i j ≈ h′(0)gi jAi j, which further implies

Gi j ≈
C+i j

∑
l k

(e)
l∑

n,l↔n C+nl
≡ G(e)

i j , (9)

where k(e)i =
∑N
j=1 A

(e)
i j is the reconstructed degree of node

i, and
∑
l↔n represents a sum over nodes l that are recon-

structed to be linked to node n. Equation (9) gives the re-
constructed relative coupling strength G(e)

i j .
The accuracy of the reconstructed adjacency matrix A(e)i j

can be measured by PSEN, the percentage of correctly re-
constructed links, and PSPEC, the percentage of correctly
reconstructed non-existent links. PSEN and PSPEC give
respectively the sensitivity and specificit of the method
in percentage. We present some of the results for un-
weighted and weighted random networks of N = 100

Case Network Dynamics PSEN PSPEC
1 random; gi j = 1 consensus 99.9 99.9
2 random; gi j = 10 FHN 100 100
3 scale-free; gi j = 1 consensus 100 100.00
4 scale-free; gi j = 10 FHN 97.4 100.00
5 WR; μ = 5, γ = 2 consensus 94.3 100.00
6 WR; μ = 10, γ = 2 logistic 99.9 100.00
7 WR; μ = 10, γ = 2 cubic 96.8 99.7
8 WR; μ = 10, γ = 2 FHN 99.5 100.00
9 weighted scale-free consensus 91.7 99.98
10 weighted scale-free FHN 86.7 99.98

Table 1: Accuracy of our method measured by PSEN and
PSPEC for various networks with consensus [ f = 0; h(z) =
z], logistic [ f (x) = 10x(1 − x); h(z) = z], cubic [ f = 0;
h(z) = z3], and FHN dynamics.

nodes and unweighted and weighted scale-free networks
of N = 1000 nodes in Table 1. The weighted random
(WR) networks used are random networks with gi j taken
from a Gaussian distribution of mean μ and standard devia-
tion γ, and the weighted scale-free network used is the one
extended [11] from the unweighted Barabasi-Albert scale-
free network [12] and has a power-law distribution in gi j.
We use σ = 1 and T ≤ 5000 for all the results presented in
this paper. As shown in Table 1, our method gives accurate
reconstruction with both PSEN and PSPEC larger than 85%.
More importantly, we note that the applicability of our
method goes beyond networks described by Eqs. (1) and
(2); it is also applicable for networks with vector variables
�xi(t) obeying higher-dimensional dynamics. In particular,
for networks with �xi(t) = (xi(t), yi(t)) obeying FitzHugh-
Nagumo (FHN) dynamics, which is a good description for
neurons [13]:

ẋi = (xi − x3i /3 − yi)/ε +
∑
j�i
gi jAi j(x j − xi) + ηi (10)

ẏi = xi + α (11)

with α = 1.05 and ε = 0.01, our method gives accurate re-
construction using only xi(t). In Figs. 1 and 2, we show re-
spectively that our method can capture well the power-law
distribution of the degree ki of the unweighted scale-free
network as well as the power-law distribution of the relative
coupling strength Gi j of the weighted scale-free network.

3. Relevance networks constructed using statistical
correlation

Using the time-series measurements, one can calculate
the covariance matrix Σ(T ), define by

Σi j(T ) = 〈[xi(t) − 〈xi(t)〉T ][x j(t) − 〈x j(t)〉T ]〉T (12)

and obtain the Pearson correlation coefficient

Πi j ≡ Σi j√
Σii

√
Σ j j

(13)
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Figure 1: Comparison of the degree distribution P(k) cal-
culated using reconstructed k(e)i (triangles) against the one
calculated using the actual ki (circles) for the unweighted
scale-free network with FHN dynamics.
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Figure 2: Comparison of P(G) of the reconstructed
G(e)
i j (squares) against the actual distribution (solid line) for

weighted scale-free network with FHN dynamics.

of nodes i and j, which measures the linear correlation of
the measurements xi(t) and x j(t). If xi(t) and x j(t) are un-
correlated, Πi j = 0 whereas if xi(t) and x j(t) are linearly re-
lated, |Πi j| = 1. It is commonly expected that nodes linked
to one another would have correlated dynamics. Thus one
common way to construct a relevance network for the net-
work of interest is to infer a link between nodes i and j if
Πi j is larger than some threshold.
Statistical correlation between xi(t) and x j(t) can arise

not only from direct interaction of nodes i and j but also
from indirect interaction of the two nodes via other nodes.
Thus an improved way to construct a relevance network is
to use the partial correlation, which measures the linear cor-
relation between xi(t) and x j(t) with the effect from xk(t),
k � i, j, of the other nodes eliminated. Specificall , the
partial correlation coefficient ρi j of nodes i and j is given
in terms of Σ−1:

ρi j = −
Σ−1i j√
Σ−1ii

√
Σ−1j j

(14)

Thus another common way to construct a relevance net-
work is to infer a link between nodes i and j when ρi j is
larger than some threshold.
In the following, we shall show that for networks de-

scribed by Eqs. (1) and (2), the relevance networks con-
structed using either Πi j or ρi j can have significan devia-
tions from the actual network. Specificall , we defin

Σ̃i j(t) ≡ [xi(t) − xi(t)][x j(t) − x j(t)] . (15)

Method 1 Method 2
Case PSEN PSPEC PSEN PSPEC
1 39.0 82.9 99.8 99.9
2 49.8 86.1 100 100
3 8.97 99.6 91.1 99.97
4 34.6 99.7 88.8 99.95

Table 2: Comparison of the relevance network constructed
using Pearson correlation coefficient (method 1) and par-
tial correlation coefficient (method 2) with the actual (un-
weighted) network for cases 1 - 4 reported in Table 1.

Then we can derive an exact result similar to Eq. (6):

lim
t→∞ Σ̃

−1(t) =
2
σ2

[
h′(0)L − f ′(X0)I] . (16)

For stationary time-series measurements, we again approx-
imate an ensemble average over noise by a long-time aver-
age and approximate limt→∞ Σ̃−1(t) by Σ−1(T ). Thus using
Eq. (16), we obtain

Σ−1i j ≈ −2h
′(0)
σ2

gi jAi j , i � j (17)

Σ−1ii ≈ 2h′(0)
σ2

si − f ′(X0) . (18)

Equation (17) clearly shows that the adjacency matrix Ai j,
giving network connectivity, is proportional to the inverse
of the covariance matrix Σ−1i j thus relevance networks con-
structed using the Pearson correlation coefficient Πi j are
doomed to have little resemblance to the actual network.
Since the denominator of ρi j depends on both Σ−1ii and Σ−1j j ,
ρi j would deviate from a simple multiple of Σ−1i j for net-
works whose nodes strength si varies a lot from node to
node and, as a result, the relevance networks constructed
using ρi j for such networks would have significan devia-
tion from the actual networks. For unweighted networks,
si = ki and thus scale-free networks with a power-law dis-
tribution in the degree ki would be such an example, and
we expect relevance network constructed using ρi j would
deviate much from the actual scale-free network. In Ta-
ble 2, we compare the relevance networks constructed us-
ing Πi j and ρi j with the actual networks. We choose the
threshold value such that the difference between the total
degree of the relevance network and the total degree of the
actual network is the smallest. Indeed, the relevance net-
works constructed using Πi j miss many links in the actual
networks and give very low values of PSEN. In Fig. 3, we
show the actual scale-free network, the relevance networks
constructed by Πi j and ρi j, and the network reconstructed
using our method. Both the relevance networks constructed
using Πi j and ρi j deviate significantl from the actual net-
work. On the other hand, the network reconstructed using
our present method resembles the actual network very well.
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Figure 3: Comparison of (a) network reconstructed by our
method usingC+, relevance networks constructed using (b)
Πi j and (c) using ρi j with (d) actual (unweighted) scale-free
network of consensus dynamics. The circles and the lines
represent the nodes and the links of the network. The size
of the circle is proportional to the degree of the node.

4. Summary

In summary, we have developed a method that recon-
structs both the links and their relative coupling strength
for weighted bidirectional networks. The method is based
on general mathematical result [Eq. (6)] derived for net-
works described by Eqs. (1) and (2) but its applicability has
been shown to go beyond such networks and particularly to
networks with vector variables obeying higher-dimensional
dynamics such as the two-dimensional FitzHugh Nug-
amo dynamics. Using unweighted and weighted random
and scale-free networks with various dynamics, we have
demonstrated that our method can give accurate reconstruc-
tion that captures well the network topology, the degree
distribution as well as the relative coupling strength dis-
tribution. Finally, using the general mathematical results
obtained, we further show why relevance network con-
structed using Pearson correlation coefficient is doomed
to have poor resemblance of the actual network and rele-
vance network constructed using the partial correlation co-
efficient can have significan deviation from the actual net-
work whose nodes have nonuniform node strength.
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