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Abstract—Multisensory integration is important in our
brain. However, understanding how the brain integrates
multiple sensory cues in its neural circuitry remains a chal-
lenge. In this study, using biologically realistic neural net-
work models, we propose a novel mechanism of how multi-
sensory information might be integrated in a distributed
fashion across interconnected brain areas without the need
for a central integration unit. We show that this decentral-
ized system can integrate information optimally in a bio-
logically realistic setting, and is in good agreement with
anatomical constraints and the experimental observations.

1. Introduction

In our daily life, we sense the world through multiple
sensory systems. For instance, while walking, we perceive
heading direction through either the visual cue (optic flow),
or the vestibular cue generated by body movement, or both
of them [1–3]. Because of ubiquitous noise in the nature,
our perception of the input information is often uncertain.
In order to achieve an accurate representation of the input,
it is important for the brain to integrate cues which all con-
vey information of the same feature. A number of elegan-
t psychophysical experiments have demonstrated that hu-
mans and animals integrate multisensory information in an
optimal Bayesian way. For instances, the integration of vi-
sual and auditory cues to infer object location [4], combing
visual and proprioceptive cues to hand position [5], visual
and haptic integration of object height [6], and texture and
motion integration [7].

Mathematically, Bayesian inference provides an optimal
way to estimate the stimulus value based on multiple uncer-
tain information resources. Consider that stimulus s gener-
ates cue 1 c1 and cue 2 c2 (internal representation in the
brain). Under the assumption that the noise processes of t-
wo cues given stimulus are conditionally independent with
each other, the posterior distribution p(s|c1, c2), satisfies [8]

p(s|c1, c2) ∝ p(c1|s)p(c2|s)p(s), (1)

where p(s) is the prior distribution of stimulus, which is
modelled as a uniform distribution in this study. p(cl|s)
(l = 1 or 2) is the likelihood function, which is modelled
as a Gaussian distribution with mean µl and variance σ2

l .

Because of flat prior, the posterior of stimulus when giving
two cues can be factorized as the products of the posterior
given each single cue

p(s|c1, c2) ∝ p(s|c1)p(s|c2). (2)

And the posterior under single cue, p(s|cl) satisfies a same
Gaussian distribution as the likelihood function p(cl|s). E-
q. (2) indicates that the mean and variance of posterior giv-
en two cues can be predicted from the posteriors under ei-
ther single cues

V(s|c1, c2)−1 = V(s|c1)−1 + V(s|c2)−1, (3)
⟨s|c1, c2⟩

V(s|c1, c2)
=

⟨s|c1⟩
V(s|c1)

+
⟨s|c2⟩

V(s|c2)
, (4)

where ⟨s|cl⟩ = µl, V(s|cl) = σ2
l . Eqs. (3 and 4) together are

used as a criteria to check whether Bayesian is achieved in
experiment (e.g., [6]), which will be also used in this study.

Nevertheless, the detailed neural mechanism underly-
ing Bayesian integration remains largely unclear. Previ-
ous modelling studies all used a single dedicated network
to receive feedforward inputs and then integrate informa-
tion [9, 10]. However, in the visual and vestibular in-
tegration for heading direction, recent electrophysiologi-
cal experiments found that instead of single multisensory
brain area, but more than one brain area, including dor-
sal medial superior temporal (MSTd) area and ventral in-
traparietal (VIP) area, can optimally integrate visual and
vestibular inputs to infer the heading direction [2, 3]. More-
over, in anatomy, MSTd and VIP are reciprocally connect-
ed [11, 12].

Based on these experimental evidence, we propose that
the MSTd and VIP may constitute a decentralized system
in the brain to integrate visual and vestibular information.
To verify this possibility, we construct a model of decen-
tralized system which is composed of two reciprocally con-
nected networks. Because of the wide tuning function of
MSTd and VIP neurons with respect to heding direction,
each network is chosen as a continuous attractor neural net-
work (CANN). And each network receives a cue as feedfor-
ward input, which conveys the information of correspond-
ing stimulus. By using theoretical analyses and numerical
simulations, we demonstrated that each network in the de-
centralized system can integrate information optimally in
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the sense of Bayesian inference. Our result suggests that
the brain may implement Bayesian information integration
distributively through reciprocal connections between cor-
tical regions.

2. The decentralized network model

We consider a decentralized system consist of two recip-
rocally connected networks, with each receives a feedfor-
ward inputs representing the information of a stimulus (see
Fig.1A). Each network is modelled as a CANN, due to the
wide tuning functions of MSTd and VIP neurons. CANNs,
also known as neural field model, have been successfully
applied to describe the encoding of head-direction in neu-
ral systems [13]. And it has been demonstrated that the
CANN can infer the underlying stimulus value from noisy
inputs through a template-matching operation, and behave
in a manner near a maximal likelihood estimator [14, 15].

The dynamics of a neuron in the decentralized system
is determined by the recurrent inputs from other neurons
in the same network, the reciprocal inputs from neurons
in the other network, the feedforward input Il(θ, t), and its
own relaxation. Mathematically, it can be written as [16]

τ
∂ul(θ, t)
∂t

= −ul(θ, t) +
∑2

m=1 ρ
∫ π
−πWlm(θ, θ′)rm(θ′, t)dθ′

+Il(θ, t), (5)

where θ denotes the stimulus value (i.e. the heading di-
rection) encoded by both networks, and the neuronal pre-
ferred stimuli are in the range of −π < θ ≤ π with periodic
boundary condition. And ul(θ, t), for l = 1, 2, represents
the synaptic input at time t of the neuron preferring stimu-
lus θ in the l-th network. rl(θ, t) is the firing rate of neurons,
which is a function of ul(θ, t) with a divisive normalization
form [14, 17],

rl(θ, t) =
[Ul(θ, t)]2

+

1 + kρ
∫
θ′

[Ul(θ′, t)]2
+dθ′
, (6)

where the symbol [x]+ denotes a half-rectifying function,
i.e., [x]+ = 0, for x ≤ 0 and [x]+ = x, for x > 0, and k
reflects the strength of global inhibition.

Wlm(θ, θ′) denotes the connection from the neurons θ′ in
the network m to the neurons θ in the network l. Thus,
Wll(θ, θ′) denotes the recurrent connection within the same
network, and Wlm(θ, θ′) (l , m) represents the reciprocal
connection between the networks. We assume they are of
the Gaussian form, i.e.,

Wlm(θ, θ′) =
Jlm√
2πa

exp
[
− (θ − θ′)2

2a2

]
, (7)

where a determines the neuronal interaction range. We
choose Jlm > 0, for l,m = 1, 2, implying excitatory re-
current and reciprocal neuronal interactions. And recipro-
cal connection strength Jlm (l , m) is always smaller than

recurrent connection strength Jll. The contribution of in-
hibitory neurons is implicitly included in the divisive nor-
malization (Eq. 6).

When cue l is presented, network l receives a feedfor-
ward input Il(θ, t), which can be regarded as the inputs from
unisensory cortical area,

Il(θ, t) = αlexp
[
− (θ − µl)2

4a2

]
+ γlξl(θ, t) + ηlϵl(θ, t), (8)

whereαl is the input intensity and µl denotes the stimu-
lus value conveyed to the network l by the corresponding
sensory cue. This can be understood as Il drives the net-
work l to be stable at µl when no reciprocal interaction and
noise exist. The term γlξl(θ, t) + ηlϵl(θ, t) denotes the input
noise, with ξl(θ, t) and ϵl(θ, t) are two independent Gaus-
sian white noises of zero mean and unit variance. The input
noise consists of two parts. The first part γlξl is stimulus-
independent, and the second one ηlϵl depends on the signal
strength αl, implying that ηl = 0 when αl = 0. The noise
term causes the uncertainty of the input information, which
induces fluctuations of the network state. The exact form
of Il is not critical here, as long as it has an unimodal for-
m. In this study, to simplify the analyses, we take a sym-
metric parameter setting for two networks, meaning that
J11 = J22 ≡ Jrc, J21 = J12 ≡ Jrp.

2.1. Simply the network dynamics

It has been demonstrated that the dynamics of CANN is
dominated by position changes [18, 16]. In this case, the
network dynamics can be solved by using the following
Gaussian ansatz

ul(θ, t) ≈ Ul exp
[
− (θ − zl(t))2

4a2

]
, (9)

rl(θ, t) ≈ Rl exp
[
− (θ − zl(t))2

2a2

]
, (10)

where Ul and Rl represent the mean values of bump height,
which are treated unchanged in the statistically stationary
state. zl(t) denotes the position of bump at time t, which is
interpreted as the network estimates for stimulus [14]. The
dominant mode corresponding to bump position change is
found as [18]

ϕ(θ|z) =
θ − z

a
exp
[
− (θ − z)2

4a2

]
. (11)

By projecting the full network dynamics (Eq. 5) onto the
dominant mode of bump position (Eq. 11), we get the
dynamics of the bump position for both networks (pro-
jecting a function f (θ) onto mode ϕ(θ|z) is to compute∫
θ

f (θ)ϕ(θ|z)dθ/
∫
θ
ϕ(θ|z)2dθ).

dz1

dt
= g12(z2 − z1) + h1(µ1 − z1) + β1ξ1(t), (12)

dz2

dt
= g12(z1 − z2) + h1(µ2 − z2) + β2ξ2(t), (13)
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Figure 1: Network structure and stationary state. (A) The
two networks are reciprocally connected and each of them
forms a CANN. Each circle represents an excitatory neu-
ron with its preferred heading direction indicated by the
arrow inside. The red circle xrepresents the inhibitory neu-
ron pool which sums the total activities of excitatory neu-
rons and generates divisive normalization (Eq.6). The sol-
id line with arrow is excitatory connection with the color
indicating the strength. The red dashed line with dots rep-
resents inhibitory connection. (B) The stationary states of
network 1, whose position in the perceptual space is deter-
mined by the position of feedforward inputs. Parameters:
N = 100, k = 5 × 10−4, a = 40◦, Jrc = 0.5Jc, Jrp = 0.5Jrc.
Jc = 2

√
2(2π)1/4

√
kaρ is the minimal recurrent connection

strength for holding persistent activity. And α = 0.6U0,
where U0 = Jc/4ak

√
π is the synaptic bump height the

network hold when Jrc = Jc and without reciprocal con-
nection. γ = 0.5 and η = 0.3.

where glm = ρJlmRm/(
√

2τUl) denotes the effective
strength of reciprocal connections, hl = αl/(τUl) the
effective strength of feedforward inputs, and βl =

2
√

a(γ2
l + η

2
l )/((2π)1/4τUl) the effective strength of noise.

3. Optimal integration in decentralized network

Let’s verify whether the network estimates satisfy the
Bayesian predictions. Similar with typical cue integration
experiments (e.g., [6]), we first applied two single cues in-
dividually, and then applied both of them simultaneously
(Fig. 2A). Then we check, for each network, whether the
estimates under combined cues can be predicted from the
ones under two single cues by using Bayesian inference (E-

qs. 3 and 4).
In theoretical analysis, we assume that the effective

strength glm and hl (when cue l is presented in Eqs. (12,
13) are approximatly unchanged with stimulus conditions
and abbreviated to glm ≡ grp and hl ≡ h (αl , 0) under
symmetric parameter setting, respectively. Moreover, we
further assume that the effective noise strength β, a ratio
of noise variance over bump height and reflect the signal to
noise ratio of the network, is also approximately unchanged
across different stimulus conditions. This is supported by
the experimental evidence that the Fano factor of neuron
changes insignificantly with stimulus conditions [2]. With
these approximations, the estimation mean and variance of
network 1 in statistically stationary state under three stimu-
lus conditions can be calculated from Eqs. (12 and 13) (the
results of network 2 can be obtained by interchanging the
indices of 1 and 2)

• Only cue 1 is presented (h1 = h; h2 = 0)

⟨z1|c1⟩ = µ1, V(z1|c1) =
β2

2
h−1; (14)

• Only cue 2 is presented (h1 = 0; h2 = h)

⟨z1|c2⟩ = µ2, V(z1|c2) =
β2

2
(h−1 + g−1

rp ); (15)

• Combined cues (h1 = h2 = h)

⟨z1|c1, c2⟩ =
(h−1 + g−1

rp )µ1 + h−1µ2

2h−1 + g−1
rp

, (16)

V(z1|c2) =
β2

2

h−1(h−1 + g−1
rp )

2h−1 + g−1
rp
. (17)

It can be checked that the estimates of both network satisfy
the Bayesian predictions (Eqs. 3 and 4), meaning that the
estimates of each network individually satisfy

V(zl|c1, c2)−1 = V(zl|c1)−1 + V(zl|c2)−1, (18)
⟨zl|c1, c2⟩

V(zl|c1, c2)
=

⟨zl|c1⟩
V(zl|c1)

+
⟨zl|c2⟩

V(zl|c2)
, l = 1or 2. (19)

While the optimal integration can be achieved in our
theoretical analysis of decentralized network, the effective
strength grp, h and β will generally change nonlinearly
with network parameters and stimulus conditions, possibly
making the network estimations deviate from the Bayesian
observer. Hence, we performed numerical simulation to
check whether the network can integrate two cues optimal-
ly. Fig. 2B plots the population activities of two network-
s in response to two congruent cues both centered at 0◦.
When two cues are simultaneously presented, the network
responses are increased compared with single cue condi-
tion. Fig. 2C is a snapshot of the population activity of
network 1, which is a noisy bump. And the bump position
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Figure 2: Optimal information integration in decentralized
system. (A) Illustration of the three stimulus condition-
s applied to the system. (B) Population activities of two
coupled networks in response to stimulus condition shown
in (A). (C) A snapshot of the population activity in net-
work 1. The position of the activity bump is considered
as the current estimate of the network (z1). (D) and (E).
Comparisons between network’s estimation mean and vari-
ance with Bayesian predictions (Eq. 3 and 4) under differ-
ent parameters. Parameters: α ∈ [0.5, 1.2]U0, γ = 0.5 and
η ∈ [0.3, 0.6], and Jrc = 0.5Jc, Jrp ∈ [0.6, 0.9]Jrc.

z1, can be estimated by population vector numerically, rep-
resents the network estimates of stimulus [14, 17]. Finally,
we compare the estimation means and variances of both
networks versus Bayesian predictions under different com-
binations of parameters. For each network, the Bayesian
prediction is substituting the estimation mean and variance
under single cue conditions of the same network into Eqs.
(3 and 4). Fig. 2D and 2E compares the network estima-
tion results with Bayesian predictions, indicating that the
decentralized system actually integrate two cues optimally.

4. Conclusions and Discussions

In the present study, we have proposed a novel decentral-
ized architecture to implement Bayesian information inte-
gration. The decentralized system is composed of two cou-
pled networks, and in general can be extended into multi-
ple connected ones. Each network in the decentralized sys-
tem is modeled as a CANN and individually receives the
stimulus information from an independent cue. We found

the information integration is achieved by the reciprocal
connections between networks. Our study may have a far-
reaching implication on neural information processing. It
suggests that the brain can implement efficient information
integration in a distributive manner through reciprocal con-
nections between cortical regions. Compared to centralized
information integration, distributive processing is more ro-
bust to local failures and facilitates parallel computation.
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