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Abstract—Self-organized critical states and stochastic
oscillations are simultaneously observed in neural system-
s. Here we show that stochastic oscillations can emerge in
self-organized criticality of small size neuronal networks.
As a result, the oscillation is very sensitive to weak exter-
nal input and displays phase sensitivity. Our results sug-
gest that finite-size, columnar neural circuits may play an
important role in generating neural oscillations around the
critical states, potentially enabling functional advantages of
both self-organized criticality and oscillations for sensitive
response to transient stimuli.

1. Introduction

Oscillation in brain activity has been observed for more
than 80 years [1]. Several different oscillation bands exist
and appear in different states of the brain [1]. In the spec-
trum of these oscillations, broad noise background always
accompanies with the peaked frequency of the oscillation.
Therefore these oscillations are stochastic oscillations. Os-
cillations characterized by repetition of activities withtyp-
ical scales are believed to be essential to brain functions,
especially to provide timing, predictability, coherence and
integration in neural information processing [2]. Howev-
er, the neurobiological and dynamical mechanisms of os-
cillations may be different and most of them are not well
understood [1], and are topics of active research.The syn-
chronization between inhibitory neurons has been found
crucial for fast rhythms, such as gamma oscillations (30-
70Hz)[3, 4]. Neural field models [5] based on popula-
tion firing rate indicated that resonance between thalamus-
cortex can generate alpha oscillations (8-13Hz). Despite
many modelling studies, a commonly accepted mechanism
of alpha rhythm is still lacking [?]. This slow oscillation is
particularly obvious during the resting states without sys-
tematic external stimuli (i.e., eye closed).

Recently, self-organized criticality is observed in the
resting states of cat and monkey’s cortex networks in ex-
periments [6, 7, 8, 9, 10]. It was shown that the critical-

ity plays an important role in the development of neural
systems [11, 12, 13]. The self-organized criticality in neu-
ral networks are also studied intensively in computational
models [10, 14, 15, 16, 17]. It has been shown that criti-
cal states have functional advantages for both the sensory
system [18] and memory [19].

Experiments on self-organized criticality of neural ac-
tivity actually also showed pronounced oscillations of lo-
cal field potentials (LFPs) [6,?, 20]. The coexistence of
self-organized criticality and oscillation has been explicitly
analyzed in the maturation of cortex [21]. Modelling stud-
ies found that they can indeed coexist in biologically plau-
sible neuronal networks [22, 23]. In hierarchical modular
networks, when neurons in modules are densely connect-
ed and modules are coupled sparsely, modules can exhibit-
s both self-organized criticality and stochastic oscillation
[22].

A natural property of criticality is the sensitivity to weak
perturbation. This property of criticality raises a question
that if the oscillation in resting state has sensitivity to per-
turbation. In the present work, we use numerical simula-
tion to demonstrate the sensitivity of stochastic oscillation
in self-organized criticality.

2. Model

The neural network model consists of both excitatory
and inhibitory neurons. E-I balance has been demonstrat-
ed experimentally [24, 25]. Large and sparsely connect-
ed balanced model was proposed to explain irregular [26]
and self-sustained neural activity [27], but local circuits are
more densely coupled. To mimic the modules of local cor-
tical networks, we analyze an isolated, small and dense
random network (connectivityp = 0.16, 80% of excita-
tory neurons). In the model only weak background input is
added to the network in order to simulate the resting states.
The dynamics of neurons reads [27]

τ
dV
dt
= (Vrest − V) + gex(Eex − V) + ginh(Einh − V). (1)
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Figure 1: Distribution of avalanche sizeP(s) for criti-
cal (circles), subcritical (squares) and supercritical (trian-
gles) regimes. The network size isN=500. The inhibito-
ry coupling strength is∆ginh=4.0. The excitatory coupling
strengths for subcritical, critical and supercritical states are
∆gex=0.2, 0.4 and 0.7, respectively.

When the membrane potentialV crosses a threshold (−50
mV), the neuron fires a spike. ThenV is reset to the rest
value of the membrane potential,Vrest=−60 mV. After the
spike the membrane potential is fixed for a refractory peri-
od which is 5 ms in the model. The spike of excitatory (or
inhibitory) neuron increases the synaptic conductance of
postsynaptic targets by∆gex (or ∆ginh). The synaptic con-
ductance decay exponentially and follows the equations

τex
dgex

dt
= −gex, (2)

τinh
dginh

dt
= −ginh. (3)

The time constant areτex or τinh, respectively. The bio-
logical values of the parameters [27] are used in the mod-
el. The membrane potential time constant isτ=20 ms.
The reverse potentials for excitatory and inhibitory gates
are Eex=0 mV, Einh=−80 mV, respectively. The decay
time constants of excitatory and inhibitory conductance are
τex=5 ms andτinh=10 ms. Each neuron receives an inde-
pendent external excitatory Poisson spike train with rateη.
Here we study the network under weak stimuli.

3. results

In simulations we obtained the coexistence of self-
organized criticality and stochastic oscillation (Figs. 1and
2). The avalanche is defined as a period of activity that is
initiated by an external input and terminates when no fur-
ther neuron fires spikes. The size of avalanche is measured
by the number of spiking neurons during an avalanche. In
Fig. 1 the distribution of avalanche size is presented. At
the balance region between excitatory and inhibitory cou-
plings, the avalanche size is distributed by power-law (cir-
cles in Fig. 1). When the excitatory coupling is weak,
subcritical states are obtained, the distribution of avalanche
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Figure 2: The power spectrum density of mean membrane
potential〈V〉 in the critical regime for network sizeN=500.
The coupling strengths are∆ginh=4.0 and∆gex=0.4.

size changes into exponential function. When the excita-
tory coupling is strong, supercritical states occur, and the
probability of large avalanches is higher. The subcritical
and supercritical distributions were also plotted (squares
and triangles in Fig. 1).

We use the time series of the mean membrane potential
of all neurons in the network to represented the temporal
behavior. The power spectrum of the mean membrane po-
tential is computed. When the network is at the critical
state, a pronounced peak is shown at low frequency on the
power spectrum of〈V〉 (Fig. 2). It is consistent with the
characteristics of alpha EEG of resting human brain [1],
where a peak is overlapped on a noisy background.
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Figure 3: (Color online) The parameter region where os-
cillations can exhibit a single peak in the power spectrum.
Color represents the peak frequency. The parameters are
∆gex=0.4,∆ginh = 4.0 andN = 500.

The co-organization of self-organized criticality and s-
tochastic oscillation occurs in a broad region of the pa-
rameters (∆gex,∆ginh) (Fig. 3). The critical region broadly
overlaps with the region of oscillation with only one pro-
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Figure 4: (Color online) (a) The stimulus-increased firing
rate∆r versus∆gex. The stimuli last for 2 ms, 5 ms, and 10
ms. The firing rate is computed in 50 ms after the stimula-
tion. Here∆ginh = 4.0 andN = 500.

nounced peak at the main frequency (Fig. 3). In the subcrit-
ical states, there is no peak on the power spectrum, while
in the supercritical states, multiple peaks appear. Previ-
ously, neural oscillations were explained by the synchro-
nization between inhibitory neurons [4] or the alternating
activation between excitatory and inhibitory population-
s (E-I loop) [28]. Here oscillations can emerge due to
the accumulation-release process in small systems at self-
organized critical states, where the quick release activates
the E-I loop. The E-I loop becomes dominant in the super-
critical states without a pronounced accumulation interval.

The co-organization of self-organized criticality and s-
tochastic oscillation enables the system to display respon-
siveness of both self-organized criticality and oscillations
in the presence of weak transient stimuli. Critical states
can respond sensitively as shown in Fig. 4, where a tran-
sient stimuli of different duration withη1=50 Hz are added
on the background external driving (η=20 Hz). With the
background stimuli, the average firing rate of neurons is
r=4.5 Hz. The firing rate increases clearly at the critical
region, similar to critical state in network of excitatory ele-
ments [18]. Meanwhile, due to oscillation, the response of
critical states can display “phase sensitivity” (Fig. 5): the
response depends on the mean membrane potential〈V〉 at
the onset of the stimuli. Dependence of the stimulus-driven
activation on the phases of ongoing brain waves has been
observed in cognitive experiments [29].

4. Conclusion

We simulated self-organized critical states of densely
connected small networks. At the critical states, the net-
work exhibits stochastic oscillation under a weak input.
The stochastic oscillation has the responsiveness of both
critical states and oscillation. We showed that the stochas-
tic oscillation of critical states is sensitive to transient exter-
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Figure 5: (Color online) Phase-sensitive response of crit-
ical oscillations to weak transient stimuli. The response
of critical states versus the mean membrane potential at
the timing of adding stimuli (lasting for 1 ms). Here
∆ginh = 4.0 andN = 500.

nal stimuli. Meanwhile the response depends on the phase
of the oscillation at the onset of the stimuli. All these prop-
erties could be useful for efficient neural information pro-
cessing.
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