
  

Neural synaptic properties and conductance kinetics jointly influence how 

neurons process correlated input 

 

Ho Ka Chan
1,2 *, 

Dong-ping Yang
1,2

 and Changsong Zhou
1,2

  
 

1
Department of Physics, Hong Kong Baptist University,  

Kowloon Tong, Hong Kong  
2
Centre for Nonlinear Studies, Institute of Computational and Theoretical Studies, 

Hong Kong Baptist University, Kowloon Tong, Hong Kong 

 

*E-mail: chanhoka911212@yahoo.com.hk 

 

Abstract– Neurons transmit information through spikes. 

Given the prevalence of correlation among neural spike 

trains experimentally observed in different brain areas, it 

is of interest to study how neurons compute correlated 

input. Yet how it depends on the synaptic properties and 

conductance kinetics is very little known. Through 

simulation of leaky integrate-and-fire (LIF) neurons, we 

studied the effects of synaptic decay times, level of input 

activities and conductance fluctuation on the output 

correlation of different time scales for neurons receiving 

correlated excitatory input. We showed that the ratio of 

long-term correlation to short-term correlation 

(synchrony) increases with excitatory synaptic decay time 

due to the combined effects of jittered spike time and 

burst firing. In particular, it is possible for neurons with 

small excitatory synaptic decay time in high conductance 

state to give extra precisely timed synchronous spikes 

without exhibiting correlation of longer timescales in 

response to correlated input. In addition, we showed that 

burst firing greatly enhances output correlation but not 

synchrony, leading to an increase in correlation when 

conductance fluctuation is ignored. 

 

 

1. Introduction 

 

Many studies in vivo revealed that neurons in different 

brain areas often exhibit correlated activities [1-3]. 

However, the functions and consequences of correlation, 

and whether correlated input carries any information have 

long been debated. One of the key questions is how input 

correlation are computed and transmitted from a layer of 

neurons to another [4-7]. 

 

How a neuron processes input depends primarily on 

two factors. First, it depends on how synaptic conductance 

changes when a presynaptic spike arrives [8]. Second, it 

depends on how quickly the post-synaptic neuron 

integrates the synaptic conductance, culminating in 

changes in its membrane potential. This is widely known 

as synaptic filtering. It depends not only on the membrane 

capacitance, but also on the total conductance the neuron 

receives, primarily affected by the level of synaptic 

bombardment by presynaptic input spikes [9]. Therefore, 

it can be expected that apart from input properties like 

input synchrony and correlation, neural synaptic 

properties and the level of input activities also play an 

important role in shaping the output of a neuron.  

 

In this work, we studied the effects of several 

biophysical factors, namely the excitatory synaptic decay 

time, level of input activities and higher order 

conductance effects on neural computation of correlated 

input through numerical simulation of a pair of LIF 

neurons. In particular, we showed that when the synaptic 

time constant and effective membrane integration time 

constant are both small, neurons respond to correlated 

input solely by giving extra precisely timed synchronous 

spikes, suggesting the viability of synchrony coding by 

such neurons. Furthermore, we found that long-term 

correlation but not synchrony is greatly enhanced by burst 

firing. The effects of burst firing pose a challenge of 

studying the problem of correlation transfer analytically, 

and suggest that simplified model neurons, failing to take 

into account some observed biological features, like 

conductance fluctuation, may overestimate both the 

efficiency of correlation transfer and correlation-to-

synchrony ratio of biological neurons. 

 

2. Method 
 

2.1. Neuron model 

 

2.1.1. Conductance based LIF model 

 

The membrane potential of a conductance based LIF 

model neuron [10] is given by: 

 

C
𝑑

𝑑𝑡
𝑉(𝑡) + [𝑉(𝑡) − 𝑉𝑒]𝐺𝑒(𝑡) + [𝑉(𝑡) − 𝑉𝑖]𝐺𝑖(𝑡) +

[𝑉(𝑡) − 𝑉𝑟]𝐺𝑙 = 0,                   (1) 

 

where C is the membrane capacitance, 𝑉(𝑡)  is the 

membrane potential, 𝑉𝑟 , 𝑉𝑒  and 𝑉𝑖  are the membrane rest 
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potential, excitatory synapse reverse potential and 

inhibitory synapse reverse potential respectively. 𝐺𝑙 is the 

membrane leak conductance. To model the event of firing, 

a neuron is considered to have fired when its membrane 

potential reaches a hard threshold 𝑉𝑡ℎ . The membrane 

potential is then artificially brought to a reset potential 

𝑉𝑟𝑒𝑠𝑒𝑡  and clamped to that value for a fixed refractory 

period 𝑡𝑟𝑒𝑓𝑟𝑎. 

 

In the model, inputs are modelled by conductances. The 

excitatory and inhibitory synaptic conductance, denoted 

by 𝐺𝑒(𝑡)  and 𝐺𝑖(𝑡)  respectively, are modelled by linear 

summation of conductance change due to each 

presynaptic input spike. 

 

We can define a quantity 𝜏𝑒𝑓𝑓(𝑡) =
𝐶

𝐺𝑡𝑜𝑡𝑎𝑙(𝑡)
 , where 

𝐺𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝐺𝑙 + 𝐺𝑒(𝑡) + 𝐺𝑖(𝑡). Expressing equation (1) 

in terms of 𝜏𝑒𝑓𝑓(𝑡), we obtain 

𝜏𝑒𝑓𝑓(𝑡)
𝑑

𝑑𝑡
𝑉(𝑡) = −𝑉(𝑡) +

𝑉𝑒𝐺𝑒(𝑡)+𝑉𝑖𝐺𝑖(𝑡)+𝑉𝑟𝐺𝑙

𝐺𝑡𝑜𝑡𝑎𝑙(𝑡)
 .      (2) 

 

𝜏𝑒𝑓𝑓(𝑡) has the physical meaning of effective membrane 

time constant [11]. It quantifies how fast the membrane 

responds to fluctuating conductance and is related to the 

total synaptic conductance which depends on the level of 

input activities. 

 

2.1.2. Modified Current based LIF model 

 

We may expand the membrane potential and synaptic 

conductance in equation (1) into tonic parts and 

fluctuation parts [12]. By assuming that the fluctuation 

parts are much smaller than the tonic parts, we obtain 

 

< 𝜏𝑒𝑓𝑓(𝑡) >
𝑑

𝑑𝑡
𝑉(𝑡) = −𝑉(𝑡) +

𝑉𝑒𝐺𝑒(𝑡)+𝑉𝑖𝐺𝑖(𝑡)+𝑉𝑟𝐺𝑙

<𝐺𝑡𝑜𝑡𝑎𝑙(𝑡)>
,   (3) 

 

where <> denotes the average over time. Equation (3) is to 

be called the ‘modified current based model’ in this work.  
 

2.2. Synaptic input 
 

The contribution of each input to the conductance 

change is modelled by an alpha function and the 

integration (from t = −∞ to ∞ ) of conductance change 

due to an input spike is kept constant. The total 

conductance change is modelled by linear summation of 

conductance change due to each presynaptic input spike. 

 

𝑔𝑠(𝑡) = 𝐴𝑠
𝑡

𝜏𝑠
2 𝑒

1−
𝑡

𝜏𝑠𝐻(𝑡),   𝐺𝑠(𝑡) = ∑ 𝑔𝑠(𝑡 − 𝑡𝑗)𝑗  ,    (4) 

 
where 𝐴𝑠  are synaptic efficacies, 𝜏𝑠  are synaptic time 

constant and the subscript s can be chosen as e, referring 

to ‘excitatory’ or i, referring to ‘inhibitory’. 𝐻(𝑡) is the 

Heaviside step function. 𝑡𝑗, referring to the timing of input 

spikes, is assumed to have Poisson statistics. 
 

2.3. Input correlation 

 

In order to add correlation to the input spike trains, we 

adopt the Single Interaction Process [13]. Each neuron 

receives an independent excitatory spike train with input 

rate (1 − 𝑐)𝜆𝑒 . In addition, they receive a common 

excitatory spike train with input rate 𝑐𝜆𝑒 . The pairwise 

spike count correlation coefficient between the spike train 

is then 𝑐. Inhibitory spike trains are not correlated in this 

work.  
 

2.4. Balance between excitation and inhibition 

 

Most biological neurons operate in the fluctuation driven 

regime [4]. It means that excitation and inhibition must be 

balanced. In this work, this is achieved by adjusting the 

inhibitory input rate  𝜆𝑖  such that the output firing rate 

𝑜𝑢𝑡 remains constant for different parameters. The reason 

of doing so is that output correlation is sensitive to the 

base-line firing rate of the post-synaptic neurons as shown 

by [5].  

 

2.5. Characterizing output correlation 

 

To quantify the correlation of output spike trains, we 

consider the cross-correlation function CCF(δt), given by 

 

CCF(δt) =< 𝑛1(𝑡)𝑛2(𝑡 + δt) > −< 𝑛1(𝑡) ><

𝑛2(𝑡 + δt) >  =< 𝑛1(𝑡)𝑛2(𝑡 + δt) > −
𝑜𝑢𝑡

2
,             (5) 

 

where 𝑛𝑗(𝑡) is the number of spikes per second in a spike 

train of the 𝑗𝑡ℎ neuron. In order to further separate output 

synchrony from correlation of longer time scale (please 

note that ‘correlation of longer time scale’ will be simply 

referred to as ‘correlation’ in the following sections unless 

otherwise specified) quantitatively, we introduce two 

quantities, 𝑐𝑜𝑟𝑟 and 𝑠𝑦𝑛𝑐, by integrating the area below 

the graph of CCF  from time δt = −𝑇𝑙𝑎𝑟𝑔𝑒  to 𝑇𝑙𝑎𝑟𝑔𝑒  and 

from δt = −𝑇𝑠𝑚𝑎𝑙𝑙  to 𝑇𝑠𝑚𝑎𝑙𝑙  respectively, where 𝑇𝑙𝑎𝑟𝑔𝑒  

(𝑇𝑠𝑚𝑎𝑙𝑙) is chosen to have a large (small) value. These 

quantities correspond to the strength of output correlation 

and synchrony respectively. 

 

Parameters chosen are listed below: 𝑉𝑟 = −70𝑚𝑉, 𝑉𝑒 =

0,𝑉𝑖 = −75𝑚𝑉, 𝑉𝑡ℎ = −50𝑚𝑉, 𝑉𝑟𝑒𝑠𝑒𝑡 = −60𝑚𝑉,  

𝑡𝑟𝑒𝑓𝑟𝑎 = 2𝑚𝑠  (unless otherwise specified), 
𝐶

𝐺𝑙
= 20𝑚𝑠 , 

𝐴𝑒

𝐺𝑙
= 0.1, 

𝐴𝑖

𝐺𝑙
= 0.3, 𝑐 = 0.2 . 

 

3 Results 

 

3.1. Spike timing is jittered as 𝝉𝒆 increases 
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The ratio of correlation to synchrony, describing the 

time scale of correlation, increases as 𝜏𝑒  increases, as 

shown in Figure 1. 

 

When 𝜏𝑒  increases, charge flow through the synapses 

due to presynaptic excitatory spikes takes place for a 

longer period, which causes a prolonged change in the 

membrane potential. The timing of extra spikes attributed 

to common input is then getting more easily jittered by 

‘noises’ from other independent input, resulting in an 

increase of the time scale of correlation. 

 

3.2. Synchronous output firing when 𝝉𝒆 is small and 𝝀𝒆 

is large 

 

Figure 1 shows that the ratio of correlation to 

synchrony approaches 1, corresponding to synchrony 

firing, at small 𝜏𝑒 only when given the condition that 𝜆𝑒 is 

large. Since 𝜆𝑒 is approximately inversely proportional to 

the effective membrane time constant, it means that the 

correlated input leads to extra synchronous output firing 

when the time scale of synaptic filtering and membrane 

integration is both small. This is because such neurons 

integrate (and forget) input quickly such that the effects of 

an excitatory input spike on the membrane potential are 

short-lived. As a result correlation of long time scale is 

filtered out as seen in Figure 2, where output correlation 

decreases with 𝜆𝑒 when 𝜏𝑒 is small. 

           

 

3.3 Burst firing enhances correlation but not 

synchrony 

 

Figure 2 shows that correlation is very large when both 

𝜏𝑒  and 𝜆𝑒  are large. It turns out this can partly be 

attributed to burst firing, which refers to the phenomenon 

where more than one spikes are given in quick succession 

when a neuron experiences a temporary strong imbalance 

in excitation. In this work, it is defined by the probability 

of two randomly chosen consecutive spikes with 

interspike interval of less than 16ms. Burst firing is the 

most prevalent when the time scale of synaptic filtering is 

comparable or larger than that of the membrane 

integration, that is when both 𝜏𝑒 and 𝜆𝑒 are large (results 

not shown). 
 

To illustrate that burst firing enhances correlation, we 

repeat the simulation with increased 𝑡𝑟𝑒𝑓𝑟𝑎. This creates a 

hard minimum for the interspike interval and suppresses 

burst firing. Figure 3 shows that correlation indeed 

decreases while synchrony remains almost unaffected as 

𝑡𝑟𝑒𝑓𝑟𝑎  increases. 

 

As a final note, we stress that neurons with long hard 

refractory period are biologically unrealistic. We intend to 

show the effects of burst firing without resorting to higher 

dimensional and more complicated models. Moreover, the 

inhibitory input rate is slightly adjusted so that the output 

firing rate remains a constant, thereby preventing changes 

in correlation as a result of reduced output firing rate [19]. 

 

 
Fig.1: Ratio of correlation to synchrony increases with 𝜏𝑒 , and 

approaches unity when 𝜏𝑒 is small while 𝜆𝑒 is large. 𝜏𝑖 = 10𝑚𝑠. 

 
Fig.2: Output correlation greatly increases with both 𝜏𝑒  and 𝜆𝑒 . 𝜏𝑖 =
10𝑚𝑠. 

 

 
Fig.3: Changes in output correlation and synchrony when burst firing is 

suppressed. It is shown that correlation is reduced while synchrony is 

almost unaffected. 𝜏𝑖 = 8𝑚𝑠. 

 
Fig.4: Increase in output correlation when conductance fluctuation is 

ignored. 𝜏𝑖 = 8𝑚𝑠. 
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Fig.5: Conductance fluctuation suppressed burst firing. 𝜏𝑖 = 8𝑚𝑠. 
 

 

3.4. Conductance fluctuation leads to reduced 

correlation  

 

To study the effects of conductance fluctuation arisen 

from the multiplicative interaction between time-

dependent terms  𝑉(𝑡)  and 𝐺𝑠(𝑡)  in equation (1), we 

repeat the simulation with modified current based model 

as shown in equation (3). Figure 4 shows that correlation 

is enhanced in general compared to the results using 

conductance based model. The enhancement is the most 

significant when 𝜏𝑒  is small and 𝜆𝑒  is large, which 

coincides with the regime where burst firing is the most 

prevalent. Figure 5 shows that burst firing increases when 

conductance fluctuation is ignored, suggesting that 

conductance fluctuation reduces correlation by 

suppressing burst firing. 

 

4. Discussion 

 

4.1. Implication on neural coding 

 

An important question often discussed is neural coding. 

We would like to know what information in the spike 

trains can be reliably computed by neurons and 

transmitted from one layer of neurons to another.  

We have shown that neurons at high conductance state 

with small synaptic decay time can exhibit extra 

synchronous spiking without correlation of longer time 

scale when they receive correlated input. This suggests 

that information that may be contained in correlation in 

neural spike trains can be reliably transmitted to the next 

layer of neurons in the form of synchronous spikes, which 

can easily and quickly transmit through neuron layers 

since they can induce postsynaptic firing easily. On the 

other hand, when the time scale of synaptic filtering is 

comparable or larger than that of membrane integration, 

output correlation is strong. Output spikes are more likely 

to cluster and their statistics become less Poissonian as a 

result of burst firing.  Its implication on coding can be a 

subject of study. 

 

4.2. Analytical study of correlation transfer 

 

It is often challenging to study the output statistics of 

LIF neurons analytically without making further 

approximations. One common strategy is to approximate 

the neural dynamics as diffusion processes [5-6, 14]. In 

doing so, the temporal correlation in the input due to 

synaptic filtering is ignored. Another strategy is to use 

linear perturbation to study the influence of a single input 

spike on the membrane potential distribution, and hence 

the probability of output firing and correlation [6-7]. Such 

approach assumes that an input spike can contribute to at 

most one output spike. However, biological neurons may 

have slow synapses, rendering the above assumptions 

invalid. This work further shows that burst firing resulting 

from slow synaptic filtering has profound effects on 

output correlation. How to incorporate the effects of burst 

firing and conductance fluctuation into analytical studies 

of correlation transfer is therefore very important for our 

understanding on the subject. 
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