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Abstract—This work studies the dynamics associated to
subsynchronous interactions between wind farms and se-
ries compensated ac transmission systems. This interac-
tion originates large amplitude oscillations, which drives
the system to the instability and may also produce a se-
vere damage to the equipment. The analysis is based on
bifurcation theory and it is carried out using continuation
tools, in order to determine the role that typical parame-
ters (e.g., the compensation level and the wind speed) have
on the phenomenon. The bifurcation study reveals that the
underlying mechanism associated with the appearance of
subsynchronous oscillations can be explained by means of
Hopf bifurcations of the equilibrium point and their corre-
sponding limit cycles.

1. Introduction

The addition of large scale wind farms (WFs) to exist-
ing power systems introduces new challenges to the de-
sign and operation of the system. For example, when a
WF consisting of doubly-fed induction generators (DFIGs,
or type-3 machines), becomes radially connected to long
series compensated transmission lines1, dangerous interac-
tions between the turbines and the electric grid can arise.
This phenomenon is known as subsynchronous interaction
(SSI), and a renown incident occurred in Texas in 2009,
when after a contingency two WFs became radially con-
nected to a series compensated line. The new system con-
figuration (post-fault) produced a SSI event a few seconds
after the fault was cleared, and large amplitude subsyn-
chronous oscillations developed on the system, causing se-
vere damages not only to the capacitor bank but also to the
wind turbines [1]. This incident captured the attention of
system operators as well as power system researchers, trig-
gering a series of studies dedicated to the description of the
problem and to the analysis of mitigation proposals [2, 3].

Nonlinear analysis techniques such as bifurcation the-
ory, has been successfully used in the last few years to
study the dynamical behavior of power systems, includ-
ing the integration of renewable sources [4, 5]. Moreover,
the bifurcation theory was used to analyze subsynchronous

1The radial connection between the wind farm and the compensated
line may not occur in normal operation, but instead it may be due to a
system re-configuration after a fault.

torsional interactions in conventional synchronous gener-
ators [6]. In this work, bifurcation theory is used to de-
scribe the dynamics emerging at subsynchronous interac-
tions between DFIG wind turbines and series compensated
lines. The model used consists of a WF represented by
an equivalent DFIG wind turbine (aggregated model), con-
nected to an equivalent network via a series compensated
transmission line. Two representative bifurcation parame-
ters are used to characterize the SSI phenomenon: i) the
compensation level, defined as the ratio between the ca-
pacitive and inductive reactances of the transmission line
(i.e. µ = XC/XL); and ii) the wind speed (vwind). One-
and two-parameter bifurcation diagrams are obtained us-
ing the numerical continuation software Cl MatCont [7].
The analysis provides a clear information about the influ-
ence of the bifurcation parameters on the SSI phenomenon,
revealing the mechanisms responsible for the lost of the lo-
cal stability of the operating point (equilibrium), as well as
the amplitude and stability of the emerging periodic solu-
tions. Since the control scheme of the WF includes satura-
tion limits, other singularities such as non-smooth grazing
bifurcations of periodic orbits are also detected. Finally, the
results are resumed in a two-parameter bifurcation diagram
where a generalized Hopf bifurcation acts as the organizing
center of the dynamics.

The paper is organized as follows. The power system
model used as case study is described in Sec. 2. The bi-
furcation analysis of the SSI phenomenon is performed in
Sec. 3, and the concluding remarks are given in Sec. 4.

2. Power system model for SSI studies

A schematic representation of the power system used
in this paper is shown in Fig. 1. The model consist of a
500 MVA aggregated DFIG wind farm, radially connected
to an equivalent network (7000 MVA, 50 Hz) via a se-
ries capacitive compensated transmission line of 354 km.
The DFIG uses back-to-back power converters (the rotor-
side converter (RSC) and the grid-side converter (GSC) in
Fig. 1) to control the generated active and reactive powers.
The implemented vector control scheme is shown in Fig. 2
(see details in [8]).

The RSC controls the total active power (Ptotal) and the
reactive power (Qtotal) injected to the grid. The active
power reference (Pre f

total) is computed by means of the ac-
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Figure 1: Schematic representation of the power system
considered for the study of SSI.

tive current (ire f
A ) in order to extract the maximum power

from the wind (using a maximum power point tracking
(MPPT) algorithm). The reactive power reference (Qre f

total)
is obtained through the reactive current reference (ire f

R ) in
order to regulate the terminal voltage. The magnitude of
reference currents and voltages are limited to protect the
equipment. For example, the active and reactive reference
currents in the RSC are limited so that the maximum ap-
parent current [imax

S in Fig. 2(a)] is not exceeded. The RSC
prioritizes the reactive power injection, to support the ter-
minal voltage in case of a fault (satisfying the grid code
regulations). Then, the maximum active current reference

is calculated as imax
A =

√
(imax

S )2 − (ire f
R )2, and ire f

A ≤ imax
A .

Notice that, when ire f
R = imax

S then imax
A = ire f

A = 0. Similar
limitation schemes (with Q − axis priority) are adopted for
the remaining signals of the RSC [see Fig. 2(a)]. The rotor
current references ire f

D and ire f
Q , are calculated by a couple

of proportional-integral (PI) controllers in order to achieve
the desired active and reactive power, respectively. These
references are limited by the maximum apparent current of
the rotor (imax

rot ), prioritizing the reactive component ire f
Q . It

will be seen in Sec. 3, that this limit has an important role in
the dynamics. Finally, the voltages applied to the rotor (vD

and vQ) are calculated by means of inner control loops also
using a couple of PI controllers (plus feedforward compen-
sation terms vcomp

D and vcomp
Q ). These control actions are

limited by the maximum rotor voltage, vmax
rot .

The GSC uses the active current (igd) to maintain the
voltage on the dc-link at its reference value (vre f

cd ), while its
reactive current (igq) is regulated to zero2 (Qre f

gsc = 0). The
control strategy is similar to the one explained for the RSC,
nevertheless the GSC prioritizes the active current compo-
nent, since it is used to maintain the voltage of the dc-link.

3. Dynamical analysis of SSI

The complete power system model has 33 state vari-
ables, and since the signals of the DFIG vector control
have saturation limits, the system can be classified as piece-
wise smooth continuous (PWSC), with multiple switching
boundaries given by the maximum modules of the control

2The reactive current of the GSC may be used by a supplementary
controller in order to damp oscillations.

Figure 2: DFIG vector control. (a) RSC, the limits have re-
active power priority. (b) GSC, with active power priority.

signal, i.e., imax
S , imax

rot and vmax
rot for the RSC, and imax

gsc and
vmax

gsc for the GSC. This means that the vector field is con-
tinuous across the switching boundaries, but the Jacobian
is discontinuous. It will be seen later that the limitation
of the control signals plays an important role in the dy-
namics, since they induce grazing bifurcations of periodic
orbits [9, 10]. The numerical continuations are performed
using Cl MatCont [7]. This package provides great flex-
ibility to perform continuations in high dimensional sys-
tems. Although it is designed to work with ODE systems,
in this case, the continuation algorithm proved to be robust
enough to follow the periodic orbits after the grazing bifur-
cations. Notice that the discontinuous bifurcations are not
detected by this package.

In order to illustrate the mechanism behind the SSI phe-
nomenon, let us start by considering the locus of the eigen-
values in response to the variation of the compensation
level µ. Figure 3 shows the loci of the most relevant eigen-
values (only the positive imaginary part is shown), when
the compensation level µ goes form 1% to 100%, for two
wind speeds: 6.5 m/s (blue dots) and 8.0 m/s (green dots).
In both cases, the squares indicate the position of the eigen-
values when µ = 1%, the empty circles correspond to
µ = 50% and the triangles to µ = 100%. When the
compensation is very low (µ = 1%), the subsynchronous
mode has an acceptable damping for both wind conditions.
When µ is increased, this mode moves towards the imagi-
nary axis, decreasing both frequency and damping. On the
other hand, the supersynchronous mode moves towards the
left, increasing the frequency, with a small reduction on the
damping factor (less considerable than the one suffered by
the subsynchronous mode). In both cases, the equilibrium
point becomes unstable when the subsynchronous mode
crosses the imaginary axis, undergoing a Hopf bifurcation.
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Figure 3: Loci of the most relevant eigenvalues varying µ
for vwind = 6.5 m/s (blue) and vwind = 8.0 m/s (green).

3.1. One-parameter bifurcation analysis of SSI

In order to analyze the Hopf bifurcations associated to
the subsynchronous mode, one-parameter bifurcation dia-
grams were obtained varying µ, as shown in Fig. 4. The
stable equilibrium points are depicted with solid blue lines,
the unstable equilibria with dashed red lines and the Hopf
bifurcations (H±, where the superscript indicates the sign
of the Lyapunov index) are indicated with blue dots. Stable
limit cycles are represented with black circles, and the un-
stable cycles with empty circles. The red dots are grazing
bifurcations of the limit cycle, and the solid (dashed) gray
line indicates what would be the amplitude of the stable
(unstable) limit cycle if the system does not have limits on
the vector control signals.

Let us begin the description by considering the case with
vwind = 6.5 m/s of Fig. 4(a). Here, the Hopf bifurcation is
supercritical (H−), and a stable limit cycle emerges towards
the right. The amplitude of this cycle rapidly increases until
a grazing bifurcation occurs, when the maximum apparent
rotor current (imax

rot ) is reached [red dot in Fig. 4(a)]. Then,
for increasing values of µ, the cycle remains stable but with
an almost constant amplitude. The effect of the grazing bi-
furcation becomes notorious when the actual cycle is com-
pared with the non-limited cycle (gray line).

The second case for vwind = 8.0 m/s is shown in Fig. 4(b).
Now, the Hopf bifurcation is subcritical (H+) and an unsta-
ble cycle emerges towards the left. The amplitude grows
until the maximum rotor current limit is reached. In this
case the grazing bifurcation is a non-smooth saddle-node
of limit cycles. This bifurcation annihilates the unstable
cycle that in the non-limited case would evolve to the left
(gray dashed line) and introduces a stable one to the right
(with a bistability region near H+).

Notice that in both diagrams the cycles are the same as
their non-limited versions, until the grazing occurs. More-
over, there is a difference between the grazing bifurcation
of Figs. 4(a) and 4(b): in the first one the limit cycle persists
and conserve its stability after the singularity, while in the

Figure 4: One-parameter bifurcation diagrams varying µ.
(a) vwind = 6.5 m/s. (b) vwind = 8.0 m/s.

latter case the grazing induces a non-smooth saddle-node
bifurcation.

Finally, it is worth to mention that in the considered ap-
plication, non-smooth bifurcations appear only at limit cy-
cles. They do not arise at the equilibrium points (known
as Boundary Equilibrium Bifurcation (BEB) [10]), since
when the WF operates at nominal conditions, the reference
signals do not reach the limits (although they might be tran-
siently limited due to a perturbation).

3.2. Two-parameter bifurcation analysis of SSI

The changes in the dynamics observed between the two
bifurcation diagrams of Fig. 4 can be related to a general-
ized Hopf bifurcation and can be explained by performing a
two-parameter bifurcation analysis varying µ and vwind, si-
multaneously. The resulting diagram is shown in Fig. 5,
where the blue curve corresponds to a Hopf bifurcation
(solid when it is supercritical and dashed when it is sub-
critical), and the red one denotes grazing bifurcations of
limit cycles (solid when it is a non-smooth saddle-node and
dashed-dotted when the cycle persists with the same stabil-
ity). The dotted lines indicate the slices shown in Fig. 4.

By simple inspection of the Hopf curve, it is clear that
for a fixed value of µ the equilibrium point becomes unsta-
ble when the wind speed decreases. Moreover, the change
from H− to H+ occurs when the Lyapunov index of the
Hopf bifurcation vanishes. This codimension-two bifurca-
tion is known as generalized Hopf (GH) and it is indicated
by the black dot in Fig. 5. The rapid increment on the am-
plitude of the stable limit cycle shown in Fig. 4(a) is as-
sociated to the proximity of the point GH. Moreover, the
amplitude of the oscillation remains almost constant after
crossing the grazing curve (dashed-dotted red). The graz-
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Figure 5: Two-parameter bifurcation diagram varying µ
and vwind, simultaneously.

ing (saddle-node) curve in Fig. 5 remains very close to the
Hopf curve. This is a positive fact for the wind farm sta-
bility since the unstable limit cycle emerging from H+ only
exist in a small region close to the Hopf curve. Finally, as
shown in the blow-up of Fig. 5, the smooth saddle-node
of periodic cycles (solid green curve, CF) that emerges
at GH, interacts with the grazing bifurcation curve in a
codimension-two bifurcation of limit cycles. This singu-
larity changes the type of grazing bifurcation from the one
in which the limit cycle persists to the one that generates
a non-smooth saddle-node (a similar structure is analyzed
in [11]). This interaction will be studied in the future.

4. Conclusions

This paper shows that the dynamical phenomena in-
volved with SSI are organized by a generalized Hopf bi-
furcation and grazing bifurcations of limit cycles. The gen-
eralized Hopf denotes that the stability of the limit cycle
emerging form the Hopf bifurcation can change depending
on the parameters. Moreover, when the Hopf bifurcation is
supercritical, the amplitude of the stable limit cycle rapidly
grows until it suffers a grazing bifurcation, then it remains
practically constant. On the other hand, when Hopf bi-
furcation is subcritical, the emerging unstable limit cycle
vanishes due to a non-smooth saddle-node generated by a
grazing bifurcation. This prevents the unstable cycle from
affecting the stable operating region, and the main effects
related to the SSI appears on the right of the bifurcation
curves denoted in Fig. 5. Moreover, the controller limits
restrict the amplitude of the oscillation.
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