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Abstract—This study investigates Arnol’d tongues gen-
erated by 2-D piecewise-constant driven oscillator. In this
paper, we derived analytically some of the bounds of the
fundamental harmonic entrainment region for increasing
time period T . We also confirmed the transitions from the
periodic attractor to the two chaotic attractors and then to
the other periodic attractor.

1. Introduction

Forced synchronization phenomena are often observed
in biology and engineering systems[1, 2]. The region
where forced synchronisation occurs is known the Arnol’d
tongue, and the analysis of it has been actively research
in recent years because of its importance in understand-
ing forced synchronization. It is worth noting that Sza-
lei and Osinga [3, 4] have succeeded in deriving Arnol’d
tongue bifurcation boundaries explicitly in stick-slip oscil-
lator. We have also analytically derived the boundary of
Arnol’d tongue in autonomous piecewise linear oscillator
and 2-D piecewise-constant oscillator[5, 6].

In previous researches, we introduced a deriving al-
gorithm for rigorous solutions of 2-D piecewise-constant
driven oscillator that has piecewise linear solutions. We
have used the algorithm to derive the inner to outer bound-
ary of Arnol’d tongue analytically. However, the hysteresis
structure of the Arnol’d tongue has not been fully discussed
yet.

Therefore, in this paper, we analytically derive the
boundaries of Arnol’d tongue when the parameters are var-
ied from outside to inside. We also investigate the bifur-
cation phenomenon that occurs in this case. Some typical
bifurcation phenomena are confirmed in laboratory experi-
ments.

2. 2-D Piecewise-constant Driven Oscillator

Figure 1 shows a circuit model of the 2-D piecewise-
constant driven oscillator analyzed in this study. In the fig-
ure, H1(v1) and H2(v1) are hysteresis characteristic shown
in Fig. 2a and S gn(v2) is a signum function (see Fig. 2b).
In addition, B(T, t) represents a rectangular wave current
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Figure 1: 2-D Piecewise-constant Driven Oscillator.

(a) Hysteresis characteristic. (b) Signum function.

Figure 2: Symbols and nonlinear characteristics

Figure 3: Waveform of the rectangular periodic current
source.

source, as shown in Fig. 3. The governing equation of this
circuit is described as follows:

C1
dv1

dt
= I1 · H1(v1) + I3 · S gn(v2),

C2
dv2

dt
= I2 · H2(v1) + I4 · B(T0, t).

(1)

We consider following conditions for generates oscilla-
tions.
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(d)

Figure 4: Attractors obtained from rigorous solution algo-
rithm simulations, (a) periodic solution in the fundamental
harmonic entrainment region (α � 0.2, β � 0.3,T � 15),
(b) periodic solution in the 1/3-subharmonic entrainment
region (α � 0.2, β � 0.3,T � 30), (c) chaos attrac-
tor (α � 0.2, β � 0.37,T � 30.), (d) chaos attractor
(α � 0.2, β � 0.378,T � 30).

I2 = −I3, I1 · I2 < 0. (2)

Here, using the following normalized variables and param-
eters

τ =
I2

C1vth
, x =

1
vth

v1, y =
C2

C1vth
v2,

α = − I1

I2
, β =

I4

I2
, T =

I2

C1vth
T0,

(3)

Eq. (1) is normalized as follows:

 ẋ = −α · h(x) − sgn(y),
ẏ = h(x) + β · B(T, τ),

(4)

where “ · ” denotes differentiation with normalized time τ
and h(x) is the normalized hysteresis. In order to oscillate,
the following conditions are also assumed

0 < α < 1 and 0 < β < 1. (5)

The attractors observed in the experiment are shown in
Fig. 5.

(a) (b)

(c) (d)

Figure 5: Attractors observed in the experiment, (a) peri-
odic solution in the fundamental harmonic entrainment re-
gion (α � 0.2, β � 0.3,T � 15), (b) periodic solution in the
1/3-subharmonic entrainment region (α � 0.2, β � 0.3,T �
30), (c) chaos attractor (α � 0.2, β � 0.37,T � 30.),
(d)chaos attractor (α � 0.2, β � 0.378,T � 30).

3. Bifurcation Phenomena

We use the rigorous solution algorithm proposed by
Kuriyama et al. [6]. This method is based on the idea that
since the circuit model of this study is piecewise linear be-
havior, the rigorous solution can be obtained by consider-
ing the map from a boundary to other boundary where the
vector field transitions. We focus on the period T of the
external input and define the Poincaré map as follows:

S p = {(x, y, τ)|τ = nT }, (6)
Fp : S p → S p, (7)

(xn, yn, nT ) 7→ (xn+1, yn+1, (n + 1)T ). (8)

The fixed point is determined by

(xn, yn, (n + m)T ) = Fm
p (xn, yn, nT ), (9)

where m is the period.

3.1. Boundary of Arnol’d tongue when T is increased

We investigate outer to inner boundary of the funda-
mental harmonic entrainment region. Figure 6 shows the
boundary of the fundamental harmonic region when the
parameter is varied from the outside to the inside. Further-
more, the attractors observed in the neighborhood of the
boundary are shown in Fig. 7. As a simple example, con-
sider the attractor in Fig. 7a. First, derive the fixed point
from Eq. (9). A bifurcation occurs when the fixed point
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①
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④

Figure 6: Boundary of the fundamental harmonic entrain-
ment region. Red dots are simulation results when T is
moved from outside to inside the fundamental harmonic
entrainment region. Black line is the boundary from the
inside to the outside of the fundamental entrainment har-
monic region. The blue, yellow, purple, and green lines are
analytically derived boundaries from the respective attrac-
tors in Fig. 7.

collides with the boundary y = 0 where the sgn(y) function
switches. Therefore, from yn = 0, the bifurcation boundary
is

T = − 2
β − 3α

. (10)

This bifurcation is a saddle-node bifurcation because the
stable fixed point and the unstable fixed point collide at
yn = 0.

The solid line in Fig. 6 shows the derivation of the bi-
furcation boundary in the same way. Each solid line which
is the derived boundaries agrees with the red dots observed
by the brute force method.

3.2. Bifurcation phenomenon when β is increased

Figure 8 shows the bifurcation diagram for increasing
β. The largest Lyapunov exponent in the neighborhood
of region A, where the transition from periodic to chaotic
and then to periodic solutions is shown in Fig. 9. When
β � 0.368, the largest Lyapunov exponent exceeds 0 and
the attractor transits chaos. The attractors before and af-
ter the transition are shown in Fig. 10,11. The bifurcation
occurs and the transition is made to either of the chaotic
attractors in Fig. 11. This structure is similar to a pitch-
fork bifurcation. However, different from the pitchfork bi-
furcation that occurs in a smooth system, this bifurcation
is named a non-smooth pitchfork bifurcation because the
transition to the attractor occurs abruptly after the bifurca-
tion.
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(a) 1O in Fig. 6 (α � 0.2, β �
0.30,T � 6.0).
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(b) 2Oin Fig. 6 (α � 0.2, β �
0.26,T � 6.75).
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(c) 3O in Fig. 6 (α � 0.2, β �
0.226,T � 6.96).
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(d) 4O in Fig. 6 (α � 0.2, β �
0.209,T � 7.0).

Figure 7: Attractors observed in the neighborhood of outer
to inner boundary.

A

Figure 8: Bifurcation diagram with increasing β. The re-
gion surrounded by the black dots are the fundamental
harmonic entrainment region. Orange region is the 1/3-
subharmonic entrainment region. Blue region is the 1/2-
subharmonic entrainment region. The region A is transi-
tioning from periodic to chaotic and then to periodic solu-
tions.

Next, we consider the change from chaos to periodic so-
lutions. As shown as Fig. 9, when beta = 0.378, the at-

– 149 –



tractor will be rapidly attracted to periodic solution from
chaotic one. This suggests that a crisis has occurred.
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Figure 9: The largest Lyapunov exponent in the neighbor-
hood of region A (T = 30).
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Figure 10: Periodic solution before transition (α � 0.2, β �
0.36,T � 30).
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(b)

Figure 11: Chaos attractors after transition (α � 0.2, β �
0.37,T � 30), (a) initial condition (x = −4.0, y = 0.5), (b)
initial condition (x = −4.0, y = −0.5).

4. Conclusion

In this paper, we considered Arnol’d tongues of 2-D
piecewise-constant driven oscillator. By using analysis
with rigorous solution, we derived analytically some of the
boundaries of the fundamental harmonic entrainment for
increasing T . Furthermore, the transition from the periodic
solution to the two chaotic attractors and then back to the
periodic solution is confirmed.

Now we are attempting to derive analytically boundaries
for transition from chaotic attractors to periodic solution.
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