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Abstract—This study estimates a parameter space from
only two time-series data sets in order to predict a critical
transition caused by a saddle-node bifurcation. By estimat-
ing the parameter space, we can plot a bifurcation diagram
corresponding to the original bifurcation diagram. In addi-
tion, the Lyapunov exponent can also be approximated in
the estimated parameter space and corresponds to the bi-
furcation diagram. Thereby, we expect that the parameter
value at which the critical transition occurs is predicted.
In numerical experiments, we estimate the parameter space
for the coupled dynamics of water and vegetation, and we
compare the bifurcation diagrams in the original and esti-
mated parameter spaces. For predicting the critical transi-
tion, we confirm that the Lyapunov exponent reaches zero
when the critical transition occurs.

1. Introduction

In 1994, Tokunaga et al. [1] proposed a method for re-
constructing bifurcation diagrams (BDs), and their method
was subsequently studied by several research groups [2]–
[6]. By performing BD reconstruction, attractors can be es-
timated when bifurcation parameter values of a target sys-
tem are changed. In related studies, Bagarinao et al. [7]
and Itoh and Adachi [8] also reconstructed BDs using other
methods. In particular, Itoh and Adachi were the first to use
parameter space estimation to reconstruct a BD in which
a saddle-node bifurcation occurs. Although all types of
bifurcation are caused by changing parameter values, a
saddle-node bifurcation is characterized by a sudden and
considerable change in the associated state value.

Meanwhile, many researchers in recent years have fo-
cused on detecting critical transitions. In a critical transi-
tion, the associated state value changes suddenly and con-
siderably, examples being a regime shift in an ecosystem,
an asthma attack in medicine, and a systemic market crash
in global finance, and some critical transitions have dy-
namics that are similar to those of a saddle-node bifurca-
tion. Researchers have used early warning signals (EWSs)
to detect critical transitions [9]. An EWS notifies a change
of dynamics in a target system, and the general indicators
of an EWS increase or decrease gradually as the parameter
value approaches the value at which the critical transition
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occurs. However, although various research groups have
shown the usefulness of EWSs for various problems, an
EWS cannot predict when a critical transition will occur.

This study shows that the parameter value at which a crit-
ical transition occurs can be predicted by approximating the
Lyapunov exponent in the estimated parameter space. This
study defines the predicted parameter value as the parame-
ter value at which the Lyapunov exponent reaches zero, be-
cause the Lyapunov exponent is zero when the bifurcation
occurs. In addition, the target system is changed from the
one-dimensional vegetation biomass model used in [8] to a
multidimensional model [10] [11]. Thereby, this study also
shows that the critical transition in the multidimensional
model can be predicted by this method.

The rest of this paper is organized as follows. Section 2
introduces a method for estimating a parameter space using
an extreme learning machine (ELM) and only time-series
data sets. Section 3 introduces a method for approximating
the Lyapunov exponent in the estimated parameter space.
Section 4 shows results from numerical experiments. Fi-
nally, Section 5 gives conclusions.

2. Estimating Parameter Space Using an ELM

This section introduces a method for estimating a param-
eter space using an ELM and only two time-series data sets.
The parameter space is estimated from time-series predic-
tors trained to model the time-series data sets. It is assumed
that the time-series data sets are generated from a system
with different parameter values. This section begins by ex-
plaining the ELM as a time-series predictor. Then, this sec-
tion explains the algorithm for parameter space estimation
using the ELM [8].

2.1. Extreme Learning Machine

As proposed by Huang et al. in 2006 [12], an ELM is a
neural network composed of three layers. The training tar-
gets in the ELM are the synaptic weights of the output neu-
rons. The synaptic weights and biases of the hidden neu-
rons are generated as random numbers and are not trained.
The ELM is used as a time-series predictor in this study,
because previous studies showed that it is useful for recon-
structing BDs [3]–[6][8]. As in the numerical conditions
for a previous system in which a saddle-node bifurcation
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occurs [8], the numbers of input and output neurons are set
to one.

The ELM in this study is trained to output time-series
data at time t + 1 when time-series data are input at time t.
To satisfy this, the ELM is represented as

h(t) = g (wx(t) + b) , (1)
x(t + 1) = β · h(t), (2)

where x(t) ∈ R and x(t + 1) ∈ R are the state variables in
the target system at t and t + 1, respectively, h(t) ∈ RY is
the output vector of the hidden neurons, g(·) is a nonlinear
function, w ∈ RY and b ∈ RY are the synaptic weights and
the bias vectors, respectively, of the hidden neurons, and
β ∈ RY is the synaptic weight vector for the output neuron.
Here, Y is the number of hidden neurons. In this study, we
use the adjustable sigmoid function as follows:

g(χ) =
ε1

1 + exp(−ε3χ)
− ε2, (3)

where ε1 and ε2 are the parameters to adjust the output
range of the function, and ε3 is the parameter to adjust the
slope of the function.

The synaptic weight vector of the output neuron is
trained by

β = H†d, (4)

where H† is the pseudo-inverse of the output matrix of hid-
den neurons H = [h(1) h(2) · · · h(L)]T , and d ∈ RL is
the vector of desired output. Here, L is the length of the
training data sets.

2.2. Parameter-space Estimation

This section introduces the algorithm for parameter
space estimation using the ELM [8].

First, the synaptic weights of the output neuron in the
ELM are trained to model a target system using two time-
series data sets S 1 and S 2 by Sec. 2.1. Here, the synap-
tic weights and biases of the hidden neurons are randomly
generated before modeling and are fixed during the pa-
rameter space estimation. Thereby, the predictor function
P(·, ·) of the ELM is described as

x(t + 1) = P
!
β(n), x(t)

"
, (n = 1, 2), (5)

where β(n) ∈ RY is the trained synaptic weight vector for
the time-series data set S n.

Next, a parameter space is estimated from the two
trained synaptic weight vectors. A differential synaptic
weight vector is calculated from the trained synaptic weight
vectors β(1) and β(2) by

∆β = β(2) − β(1). (6)

The parameter space can be estimated from the differential
synaptic weight vector. Specifically, a predictor with the

estimated parameter space is given by

x(t + 1) = P (β, x(t)) , (7)
β = β(1) + a∆β, (8)

where a is a bifurcation parameter in the estimated pa-
rameter space, and thereby we can generate a time-series
equivalent to S 1 and S 2 when a = 0 and a = 1, respec-
tively. Therefore, we expect to plot the BD in the es-
timated parameter space by generating time series from
Eqs. (7) and (8) while changing the parameter a. In addi-
tion, the BD in the estimated parameter space whose range
is 0 ≤ a ≤ 1 corresponds to the BD in the original parame-
ter space whose range is between p1 and p2, where p1 and
p2 are parameters generated for time series S 1 and S 2, re-
spectively. Note that a previous study [8] showed that the
BD in the extrapolation region of the estimated parameter
space corresponds to the original BD.

3. Approximating the Lyapunov Exponent in the Esti-
mated Parameter Space

Because the Lyapunov exponent is zero when a bifurca-
tion occurs, the parameter values at which the critical tran-
sition occurs can be predicted by approximating the Lya-
punov exponent in the estimated parameter space. Based
on [13]–[15], the Lyapunov exponent in the estimated pa-
rameter space is approximated from the results of applying
the derivative of the nonlinear function P(·, ·) in Eq. (7) as
follows:

µ =
1
ϕ

ϕ#

t=1

dP(β, x(t))
dx(t)

, (9)

where ϕ is the number of trials.

4. Numerical Experiments

This section shows results for comparing the BDs in the
original and estimated parameter spaces and predicting the
parameter value at which the critical transition occurs from
the Lyapunov exponent. The coupled dynamics of water
and vegetation [10] [11] are used as the target system in this
numerical experiment. Here, the target system is changed
from the one-dimensional vegetation biomass model used
in [8] to a multidimensional model [10] [11]. Thereby, this
study also shows that the critical transition in the multidi-
mensional model can be predicted.

4.1. Experimental Conditions

The coupled dynamics of water and vegetation [10] [11]
are

dw
dt

= R − αw − λwB + v1, (10)

dB
dt

= ρwB
$
1 − B

wBc

%
− µ B

B + B0
+ v2, (11)

(12)
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(a) Original parameter space without white Gaus-
sian noise.
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(b) Original parameter space with white Gaus-
sian noise.
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(c) Estimated parameter space.

Figure 1: Bifurcation diagrams in the original and estimated parameter spaces.

Where α is the rate of soil water loss, λ is the consump-
tion rate of water by the biomass, R is the rainfall rate, ρ
is the maximum biomass growth rate, Bc is the carrying
capacity of the biomass, µ is the maximum grazing rate,
B0 is the biomass amount at which the grazing rate is half
its maximum value , and v1 and v2 correspond to external
noise. The bifurcation parameter of this dynamic system
is R. Therefore, the other parameters are set to α = 1.0,
λ = 0.12, ρ = 1, Bc = 10, µ = 2, and B0 = 1. Under these
conditions, the critical transition occurs when the bifurca-
tion parameter R is between 1 and 2. The parameter value
at which the critical transition occurs is changed by the in-
fluence of noise from the characteristics of the saddle-node
bifurcation.

For the numerical experiments, the time-series data sets
were generated using a fourth-order Runge–Kutta method
in which the time increment was 0.1. For training data, the
two time-series data sets were generated with the bifurca-
tion parameter values of R = 1.0 and R = 1.2. Here, the
length of each time series was 5000.

The numbers of input, hidden, and output neurons in the
ELM were 1, 4, and 1, respectively. The parameters ε1, ε2,
and ε3 of the adjustable sigmoid function were set to 10,
0, and 0.001, respectively. In this study, two sequences of
white Gaussian noise v1 and v2 were used, with their mean
and variance set to 0.0 and 0.01, respectively.

4.2. Bifurcation Diagrams in Original and Estimated
Parameter Spaces

Figures 1(a) and (b) show the BDs without and with
white Gaussian noise in the original parameter space, and
Fig. 1(c) shows the BD in the estimated parameter space.
Here, the mean and variance of the white Gaussian noise in
Fig. 1(b) are 0.0 and 0.01, respectively, and thus the noise
conditions are the same as those for the time-series genera-
tion. We see that the presence of noise changes the parame-
ter value at which the critical transition occurs. To compare
the BDs in the original and estimated parameter spaces, the
parameter in the estimated parameter space is converted by
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Figure 2: Lyapunov exponent in estimated parameter
space.

at = 1.0 + a(1.2 − 1.0) (13)

to correspond with the original parameter.
Comparing the BDs in the original and estimated pa-

rameter spaces, we see that the critical transition can be
predicted from only time-series data sets before the critical
transition occurs. On the other hand, we see that the crit-
ical transition does not occur when the parameter value is
decreased from at = 1. The predicted parameter value at
which the critical transition occurs is around 1.6, which is
close to that in the BD in the original parameter space with
noise.

4.3. Lyapunov Exponent in Estimated Parameter
Space

The Lyapunov exponent in the estimated parameter
space is shown in Fig. 2. Comparing the Lyapunov expo-
nent to the BD in Fig. 1(c), the parameter value at which
the Lyapunov exponent is close to zero corresponds to
the parameter value at which the critical transition occurs.
Thereby, the critical transition can be predicted by approx-
imating the Lyapunov exponent in the estimated parameter
space.
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5. Conclusion

This study showed that a critical transition can be pre-
dicted by estimating the parameter space from only two
time-series data sets before the critical transition occurs.
We demonstrated the parameter space estimation for the
coupled dynamics of water and vegetation. Comparing the
BDs in the original and estimated parameter spaces, we saw
that the parameter values at which the critical transition oc-
curred were almost the same. In addition, the parameter
value at which the Lyapunov exponent was close to zero
corresponded to the parameter value at which the critical
transition occurred in the BD. Thereby, we saw that the pa-
rameter value at which the critical transition occurred could
also be predicted by approximating the Lyapunov exponent
in the estimated parameter space.

This study has shown that the parameter value at which
a critical transition occurs can be predicted when the pa-
rameter space is estimated with high precision. However,
the estimation accuracy is sometimes low even if the pa-
rameter space is estimated under the same conditions. To
estimate the parameter space with consistently high accu-
racy, ELMs used in numerical experiments under various
conditions will be analyzed.
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