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Abstract—This paper proposes a nonparametric iden-
tification of continuous-time nonlinear systems by using
a Gaussian process (GP) model. The GP prior model
is trained by particle swarm optimization. The nonlinear
function of the objective system is estimated as the predic-
tive mean function of the GP, and the confidence measure
of the estimated nonlinear function is given by the predic-
tive covariance of the GP.

1. Introduction

Since most practical systems are continuous-time non-
linear systems, the development of accurate identification
algorithm of such systems is a key problem for precise
analysis or control design. Nonlinear system identification
based on the continuous-time model has been developed by
using neural network [1], RBF model [2], and other meth-
ods. However, since these methods are categorized into the
parametric identification, one needs many weighting pa-
rameters of any basis functions to describe the nonlinearity.
Moreover, any confidence measures for the estimated non-
linear function are not given in such identification methods.

In recent years, the Gaussian process (GP) model has
received much attention for nonlinear system identifica-
tion [3, 4]. The GP model is a nonparametric model and
fits naturally into Bayesian framework [5]. Since it has
fewer parameters called hyperparameters than the paramet-
ric models, we can describe the nonlinearity of the objec-
tive system in a few parameters. Therefore, in this paper,
we proposes a nonparametric identification of continuous-
time nonlinear systems by using the GP model. The GP
prior model is trained by using particle swarm optimiza-
tion (PSO) [6] which is a swarm intelligence optimization
technique inspired by the social behavior of a flock of birds
or a shoal of fish. The nonlinear function of the objective
system is estimated as the predictive mean function of the
GP, and the confidence measure of the estimated nonlinear
function is given by the predictive covariance of the GP.
To perform the nonlinear system identification in the GP
framework, the GP prior model has to be trained by mini-
mizing the negative log marginal likelihood of the identifi-
cation data. The conjugate gradient algorithms have been
utilized to train the GP model, but the gradient-based opti-

mization algorithms still suffer from the local minima prob-
lem unless the initial guess is suitable. An alternative ap-
proach is use of the genetic algorithm (GA), but the GA
requires complicated coding and genetic operations such
as crossovers and mutations. In this paper, the hyperpa-
rameters of the covariance functions are searched by PSO,
and the weighting parameters of the prior mean function
and the parameters in the linear term corresponding to each
candidate hyperparameter vector are estimated by the linear
least-squares method. PSO is simpler than the GA, because
the algorithm of PSO consists of only the basic arithmetic
operations and does not require complicated coding and ge-
netic operations. Therefore, the use of PSO increases the
efficiency of nonlinear system identification.

This paper is organized as follows. In section 2 the prob-
lem is formulated. In section 3 the GP prior model for the
identification is derived. In section 4 the GP prior model
is trained by using PSO and the nonlinear function are es-
timated with the confidence measure in the GP framework.
In section 5 simulation results are shown to illustrate the
effectiveness of the proposed method. Finally conclusions
are given in section 6.

2. Statement of the Problem

Consider a single-input, single-output, continuous-time
nonlinear system described by

n∑
i=0

i�n1 ,n2 ,···,nα

ai p
n−i x(t) = f (z(t)) +

m∑
j=0

j�m1 ,m2 ,···,mβ

b j p
m− ju(t) (1)

(a0 = 1, n ≥ m)

z(t) =
[
pn−n1 x(t), pn−n2 x(t), · · · , pn−nα x(t),

pm−m1 u(t), pm−m2 u(t), · · · , pm−mβu(t)
]T

y(t) = x(t) + e(t)

where u(t) and x(t) are the true input and output signals,
respectively. y(t) is the noisy output which is corrupted by
the measurement noise e(t). f (·) is an unknown nonlinear
function, which is assumed to be stationary and smooth.
p denotes the differential operator. n，ni(i = 1, 2, · · · , α)，
m and mj( j = 1, 2, · · · , β) are assumed to be known. The
aim of this paper is to identify the parameters {ai} and {bj}
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of the linear terms and the nonlinear function f (·) with the
confidence measure, from the true input and noisy output
data in the GP framework.

3. GP model for Identification

Equation (1) can be rewritten as

pny(t) = f (w(t)) −
n∑

i=1
i�n1 ,n2 ,···,nα

ai p
n−iy(t) +

m∑
j=0

j�m1 ,m2 ,···,mβ

b j p
m− ju(t) + ε(t)

w(t) =
[
pn−n1 y(t), pn−n2 y(t), · · · , pn−nαy(t),

pm−m1 u(t), pm−m2 u(t), · · · , pm−mβu(t)
]T

(2)
where ε(t) is an error caused by the measurement noise e(t).

Multiplying both sides of (2) by the state variable filter
F(p) which has a transport lag characteristic yields

pny f (t) = f (w f (t)) −
n∑

i=1
i�n1 ,n2 ,···,nα

ai p
n−iy f (t)

+

m∑
j=0

j�m1 ,m2 ,···,mβ

b j p
m− ju f (t) + ε f (t)

(3)

where uf (t) = F(p)u(t), y f (t) = F(p)y(t) and w f (t) =
F(p)w(t) are the filtered signals, and ε f (t) is assumed to
be zero mean Gaussian noise with variance σ2

n.
Putting t = t1, t2, · · · , tN into (3) yields

y = v + Gθl (4)

where

y = [pny f (t1), pny f (t2), · · · , pny f (tN)]T

v = [ f (w f (t1)) + ε f (t1), f (w f (t2)) + ε f (t2),

· · · , f (w f (tN)) + ε f (tN)]T

θl = [a1, · · · , ai, · · · , an, b0, · · · , b j, · · · , bm]T

G = [g(t1), g(t2), · · · , g(tN)]T

g(t) = [−pn−1y f (t), · · · ,−pn−iy f (t), · · · ,−y f (t),

pmuf (t), · · · , pm− ju f (t), · · · , u f (t)]T
.

(5)

A GP is a Gaussian random function and is completely
described by its mean function and covariance function.
We can regard it as a collection of random variables with
a joint multivariable Gaussian distribution. Therefore, the
function values f can be represented by the GP:

f ∼ N(m(w),Σ(w,w)) (6)

where

f = [ f (w f (t1)), f (w f (t2)), · · · , f (w f (tN))]T

w = [w f (t1),w f (t2), · · · ,w f (tN)].
(7)

w is the input (variable) of the function f , m(w) is the mean
function vector, and Σ(w,w) is the covariance matrix. The

mean function is often represented by a polynomial regres-
sion [5]. In this paper the mean function is expressed by
the first order polynomial, i.e., a linear combination of the
input variable:

m(w f (t)) = (w f (t))Tθm

θm =
[
θn1 , θn2 , · · · , θnα , θm1 , θm2 , · · · , θmβ

]T (8)

where θm is the unknown parameter vector for the mean
function. Thus, the mean function vector m(w) is described
as follows:

m(w) = wTθm. (9)

The covariance Σpq = s(w f (tp),w f (tq)) is an element of
the covariance matrix Σ, which is a function of w f (tp) and
w f (tq). Under the assumption that the nonlinear function
is stationary and smooth, the following Gaussian kernel is
utilized in this paper:

Σpq = s(w f (tp),w f (tq))

= σ2
y exp

(
−||w

f (tp) − w f (tq)||2
2�2

) (10)

where || · || denotes the Euclidean norm. Eq. (10) means
that the covariance of the outputs of the nonlinear function
depends only on the distance between the inputs w f (tp) and
w f (tq).

From (6), the vector v of the noisy function values in (4)
can be written as

v ∼ N(m(w), K(w,w)) (11)

where
K(w,w) = Σ(w,w) + σ2

nIN

IN : N × N identity matrix
(12)

and θc = [σy, �, σn]T is called the hyperparameter vector.
From (4) and (11), the GP model for the identification is
derived as

y ∼ N(m(w) + Gθl, K(w,w)). (13)

4. Identification

4.1. Training of GP prior model by PSO

At the first stage of the identification, the GP prior model
is trained by optimizing the unknown parameter vector
θ = [θT

m, θ
T
l , θ

T
c ]T. Although this is a nonlinear optimiza-

tion problem, we can separate the linear optimization part
and the nonlinear optimization part. Therefore, in this pa-
per, we propose a method that combines the LS method
with PSO. Only X = [θT

c , ωc]T is searched for using PSO,
where ωc is the cutoff frequency of the state variable filter.
The proposed training algorithm is as follows:
Step 1: Initialization
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Generate an initial population of Q particles with ran-
dom positions X0

[i] = [θT
c[i], ωc[i]]T and velocities V0

[i] (i =
1, 2, · · · ,Q).

Set the iteration counter l to 0.
Step 2: Filtering of the identification data

Construct Q candidates of the state variable filter using
ωc[i] (i = 1, 2, · · · ,Q). Calculate the filtered input uf

[i](t), fil-

tered output y f
[i](t) and their higher-order derivatives, using

each candidate of the state variable filter. Then construct Q

candidates of y[i] and Z[i] = [wT
[i]

...G[i]] (i = 1, 2, · · · ,Q).
Step 3: Construction of covariance matrix

Construct Q candidates of the covariance matrix K[i] us-
ing θc[i] (i = 1, 2, · · · ,Q).
Step 4: Estimation of θml

Estimate Q candidates of θml[i] = [θT
m[i], θ

T
l[i]]

T corre-
sponding to Xl

[i] (i = 1, 2, · · · ,Q):

θml[i] = (ZT
[i]K

−1
[i] Z[i])−1ZT

[i]K
−1
[i] y[i]. (14)

Step 5: Evaluation value calculation
Calculate the evaluation values which are the values of

the negative log marginal likelihood of the identification
data:

J(Xl
[i]) =

1
2

log |K[i]| + 1
2

(y[i] − Z[i]θml[i])
TK−1

[i]

×(y[i] − Z[i]θml[i]) +
N
2

log(2π). (15)

Step 6: Update of the best positions pbest and gbest
Update pbestl

[i], which is the personal best position, and
gbestl, which is the global best position among all particles
as follows:

If l = 0 then

pbestl
[i] = Xl

[i]

gbestl = Xl
[ibest]

ibest = arg min
i

J(Xl
[i])

(16)

otherwise

pbestl
[i] =

⎧⎪⎪⎨⎪⎪⎩
Xl

[i] (J(Xl
[i]) < J(pbestl−1

[i] ))

pbestl−1
[i] (otherwise)

gbestl = pbestl
[ibest]

ibest = arg min
i

J(pbestl
[i]).

(17)
Step 7: Update of positions and velocities

Update the particle positions and velocities using (18):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Vl+1

[i] = wl · Vl
[i] + c1 · rand1() · (pbestl

[i] − Xl
[i])

+c2 · rand2() · (gbestl − Xl
[i])

Xl+1
[i] = Xl

[i] + Vl+1
[i]

(18)
where wl is an inertia factor, c1 and c2 are constants rep-
resenting acceleration coefficients, and rand1() and rand2()
are uniformly distributed random numbers with amplitude
in the range [0, 1].
Step 8: Repetition

Set the iteration counter to l = l+1 and go to Step 2 until
the prespecified iteration number lmax.
Step 9: Determination of the GP model

Determine the vector X̂ = [θ̂T
c , ω̂c]T = [σ̂y, �̂, σ̂n, ω̂c]T

and the corresponding parameter vector θ̂ml = [θ̂T
m, θ̂

T
l ]T us-

ing the best particle position gbestlmax . Construct the sub-
optimal prior mean function and prior covariance function:

m(w f (t)) = (w f (t))Tθ̂m (19)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s(w f (tp),w f (tq)) = σ̂2

y exp

(
−||w

f (tp) − w f (tq)||2
2�̂2

)

k(w f (tp),w f (tq)) = s(w f (tp),w f (tq)) + σ̂2
nδpq,

(20)

where s(w f (tp),w f (tq)) is an element of covariance matrix
Σ, k(w f (tp),w f (tq)) is an element of covariance matrix K,
and δpq is the Kronecker delta, which is 1 if p = q and 0
otherwise.

4.2. Estimation of the Nonlinear Function

For a new input w f
∗ (t) and the corresponding function

f (w f
∗ (t)), we have the following joint Gaussian distribution:

[
y

f (w f
∗ (t))

]
∼ N

([
m(w) + Gθ̂l

m(w f
∗ (t))

]
,

[
K Σ(w,w f

∗ (t))
Σ(w f

∗ (t),w), s(w f
∗ (t),w

f
∗ (t))

])
.

(21)

From the formula for conditioning a joint Gaussian dis-
tribution, the posterior distribution for specific test data is

f (w f
∗ (t))|w,G, y,w f

∗ (t) ∼ N( f̂ (w f
∗ (t)), σ̂2∗(t)) (22)

where the mean function f̂ is given as

f̂ (w f
∗ (t)) = m(w f

∗ (t))
+Σ(w f

∗ (t),w)K−1(y − m(w) − Gθ̂l) (23)

which is used as the estimated nonlinear function of the ob-
jective system. And its covariance function σ̂∗ is evaluated
as

σ̂2
∗(t) = s(w f

∗ (t),w
f
∗ (t)) − Σ(w f

∗ (t),w)K−1Σ(w,w f
∗ (t)) (24)

which is used for the confidence measure of the estimated
nonlinear function.

5. Illustrative example

Consider a system described by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẍ(t) = f (z(t)) + b0u(t)
f (z(t)) = −(0.8 + 2x2(t))ẋ(t) + 4.0x(t)
b0 = 4.0
y(t) = x(t) + e(t).

(25)
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The measurement noise e(t) is white Gaussian noise, where
noise-to-signal ratio is about 1.5%. The number of input
and output data for identification is taken to be N = 800.
The third-order Butterworth filter is utilized as a delayed
state variable filter. The design parameters for PSO are
chosen as follows:

1) particle size: Q = 30
2) inertia factor: wl = wmax − (wmax − wmin)l/lmax, (wmax

= 0.8, wmin = 0.4)
3) acceleration coefficients c1 = 0.8, c2 = 0.8
4) maximum iteration number lmax = 100
The hyperparameters of the covariance function and

the cutoff frequency of the state variable filter have
been determined by PSO as X̂ = [σ̂y, �̂, σ̂n, ω̂c]T =

[1.846, 0.359, 0.097, 9.032]T. Estimate of the parameter in
the linear term is b̂0 = 4.052, which is very close to the
true value b0 = 4.0. The true nonlinear function f (z(t)),
the estimated nonlinear function f̂ (z(t)), the absolute error
between f (z(t)) and f̂ (z(t)), and the double standard devia-
tion confidence interval (95.5% confidence region) around
the estimated nonlinear function are shown in Fig.1, where
the thick curves depict the trajectories of the identification
data. Clearly the estimated nonlinear function f̂ (z(t)) is
shown to be very close to the true nonlinear function f (z(t))
on the data region. The confidence region of the estimated
nonlinear function grows as z(t) goes away from the data
region. On the other hand, the confidence region of the es-
timated nonlinear function is very small on the data region.
Fig.2 shows the true output x(t) and the output x̂(t) by the
estimated model, where the outputs were generated by the
inputs for validation. This figure indicates that x̂(t) matches
x(t) considerably.

6. Conclusions

In this paper we have proposed an identification method
of continuous-time nonlinear systems using the GP model.
The GP prior model is trained by the aid of PSO so that the
negative log marginal likelihood of the identification data
is minimized. The proposed identification method is cate-
gorized into the nonparametric identification and does not
need the determination of the model structure. Simulation
results show that the proposed method can accurately esti-
mate the nonlinear function with the confidence measure.
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