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Abstract—The second smallest eigenvalue of the Lapla-
cian matrix, also known as the algebraic connectivity, is an
important quantity for various network systems because it
indicates how well the network is connected. The algebraic
connectivity also characterizes some dynamic processes on
networks such as consensus algorithms for multi-agent net-
works. In this paper, we prove that the algebraic connec-
tivity of any complete multipartite graph is not less than
that of all graphs obtained from it by applying a 2-switch.
This is a generalization of the authors’ previous result about
complete bipartite graphs.

1. Introduction

The algebraic connectivity [1], which is defined as the
second smallest eigenvalue of the Laplacian matrix, indi-
cates how well the network is connected. The algebraic
connectivity also characterizes some dynamic processes on
multi-agent networks. For example, the convergence rate
of the average consensus algorithm proposed by Olfati-
Saber and Murray [2] is determined by the algebraic con-
nectivity of the communication graph. Therefore, find-
ing graphs with a high algebraic connectivity under certain
constraints on the topology is an important problem from
both a theoretical and a practical point of view.

Ogiwara et al. [3, 4] considered the problem of finding
graphs that maximize or locally maximize the algebraic
connectivity in the space of graphs with a fixed number
of vertices and edges. They proved that some well-known
classes such as star graphs, cycle graphs, complete bipartite
graphs maximize the algebraic connectivity under certain
conditions. They also proved that cycle graphs, complete
bipartite graphs, and circulant graphs locally maximize the
algebraic connectivity.

Recently, the authors of the present paper studied the
problem of finding graphs that maximize or locally maxi-
mize the algebraic connectivity in the space of graphs with
a fixed degree sequence [5]. This is closely related to
the problem in which a communication topology has to be
found for the fastest or nearly fastest consensus when the
number of communication channels for each agent is fixed.
They proved that any complete bipartite graph composed
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of six vertices or more is a local maximizer of the algebraic
connectivity in the sense that it has the largest algebraic
connectivity among all graphs in the neighborhood, where
the neighborhood of a graph G is defined as the set of all
graphs that can be obtained from G by applying a 2-switch.
A 2-switch is a well-known graph transformation that does
not change the degree sequence [6].

In this paper, as a generalization of the authors’ previous
result [5], we prove that any complete multipartite graph is
a local maximizer of the algebraic connectivity in the same
sense as above. We first review definitions of the algebraic
connectivity maximizing (ACM) graph and the algebraic
connectivity locally maximizing (ACLM) graph. We next
study some properties of eigenvalues and eigenvectors of
the Laplacian matrix of the complete multipartite graph.
We finally present the main results of this paper.

2. Algebraic Connectivity Locally Maximizing Graph

Throughout this paper, by a graph, we mean a simple
undirected graph. Let G = (V(G), E(G)) be a graph com-
posed of n vertices and m edges, where V(G) = {1, 2, . . . , n}
is the vertex set and E(G) = {e1, e2, . . . , em} is the edge set.
Each edge is expressed as an unordered pair of two distinct
vertices like {i, j}. The Laplacian matrix of G is defined by

L(G) = D(G) − A(G)

where A(G) = (ai j(G)) is the adjacency matrix defined by

ai j(G) =
{

1, if {i, j} ∈ E(G),
0, otherwise,

and D(G) is the degree matrix defined by

di(G) = |{ j | {i, j} ∈ E(G)}| .

Because L(G) is always positive semi-definite, its eigen-
values are real and nonnegative. So we hereafter denote
them by λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G). Furthermore, be-
cause L(G)1 = 0 holds, where 1 and 0 are the vectors of
all ones and all zeros, respectively, the smallest eigenvalue
of L(G) is always zero, that is, λ1(G) = 0.

The algebraic connectivity [1] is defined as follows.

Definition 1 The second smallest eigenvalue λ2(G) of
L(G) is called the algebraic connectivity of the graph G.
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Figure 1: 2-switch. Each dotted line means that there may
or may not exist an edge.

Suppose that a graph G = (V(G), E(G)) has four distinct
vertices such that E(G) contains {p, q} and {r, s} but neither
{i, k} nor { j, l}. Let G′ = (V(G′), E(G′)) be the graph ob-
tained from G by removing two edges {p, q} and {r, s}, and
by adding two new edges {p, r} and {q, s} (see Fig. 1). This
transformation is called 2-switch. It is clear that the degree
matrix does not change before and after the application of
a 2-switch. Moreover, it is well known that, for any pair of
graphs G and G′ such that D(G) = D(G′), G can be trans-
formed into G′ by applying 2-switches sequentially [6].

We now present definitions of algebraic connectivity
maximizing graphs and algebraic connectivity locally max-
imizing graphs, both of which were first introduced in [5].

Definition 2 A graph G is called an algebraic connectivity
maximizing (ACM) graph in GD(G) if

∀G′ ∈ GD(G), λ2(G) ≥ λ2(G′) ,

where GD(G) is the set of all graphs having the same degree
matrix as G.

Definition 3 A graph G is called an algebraic connectivity
locally maximizing (ACLM) graph in GD(G) if

∀G′ ∈ ND(G)(G), λ2(G) ≥ λ2(G′) ,

where GD(G) is same as Definition 2, and ND(G)(G) is the
set of all graphs obtained from G by applying a single 2-
switch.

It is apparent from these definitions that if G is an ACM
graph in GD(G) then G is an ACLM graph in GD(G). How-
ever, the converse is not true.

The following lemma shows that in some special cases G
can be proved to be an ACM graph in GD(G) by examining
only graphs in ND(G)(G).

Lemma 1 If ND(G)(G) = ∅ or all graphs in ND(G)(G) are
isomorphic to G then G is an ACM graph in GD(G).

Proof: We first consider the case where ND(G)(G) = ∅.
Suppose that GD(G) contains a graph G′ that is not G. Then
G can be transformed into G′ by applying 2-switches se-
quentially, and hence ND(G)(G) must contain at least one
graph. However, this contradicts ND(G)(G) = ∅. There-
fore, we conclude that GD(G) = {G} and hence G is the

Figure 2: Complete 4-partite graph K1,1,2,4. The algebraic
connectivity of this graph is 4.

ACM graph in GD(G). We next consider the case where
all graphs in ND(G)(G) are isomorphic to G. Suppose that
there exists a G′ ∈ GD(G) that is not isomorphic to G. Let
G0(= G),G1, . . . ,Gk−1,Gk(= G′) be a sequence of graphs
such that Gi+1 is obtained from Gi by a 2-switch. Then
there exists an i (≥ 2) such that Gi is isomorphic to G1 but
Gi+1 is not. However, this contradicts the assumption that
all graphs in ND(G)(G) are isomorphic to G. Therefore, we
conclude that all graphs in GD(G) are isomorphic to G and
hence G is an ACM graph in GD(G). □

3. Complete Multipartite Graphs are Algebraic Con-
nectivity Locally Maximizing Graphs

If the vertex set V(G) of a graph G is partitioned into
k (≥ 2) disjoint nonempty subsets V1,V2, . . . ,Vk such that
two vertices i and j are adjacent if and only if they be-
long to different subsets, then G is called a complete k-
partite graph and denoted by Kn1,n2,...,nk where nl = |Vl| for
l = 1, 2, . . . , k. A complete multipartite graph is shown in
Fig.2. In the following, we assume without loss of gener-
ality that n1 ≤ n2 ≤ · · · ≤ nk. Also, we denote the index of
the subset to which vertex i belongs by π(i), that is, i ∈ Vπ(i)
for i = 1, 2, . . . , n (=

∑k
l=1 nl). Then the Laplacian matrix

L(Kn1,n2,...,nk ) is given by

L(Kn1,n2,...,nk )i j =


n − nπ(i), if i = j,
0, if π(i) = π( j) and i , j,
−1, if π(i) , π( j).

It is well known that eigenvalues of the Laplacian matrix
of Kn1,n2,...,nk are 0, n − nk, n − nk−1, . . . , n − n1, n and their
multiplicities are 1, nk−1, nk−1−1, . . . , n1−1, k−1, respec-
tively. In this section, we show that any complete k-partite
graph Kn1,n2,...,nk is an ACLM graph in GD(Kn1 ,n2 ,...,nk ).

Lemma 2 Suppose we are given a complete multipartite
graph Kn1,n2,...,nk . Let v = (v1, v2, . . . , vn)T be any vector
such that i) ∥v∥ , 0, ii) vi = 0 for all i < Vk, and iii) vT1 =
0. Then v is an eigenvector of L(Kn1,n2,...,nk ) associated with
λ2(Kn1,n2,...,nk ) = n − nk.
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Proof: Let v be any vector satisfying the three conditions.
Then, for any i such that i < Vk (or π(i) , k), we have

(L(Kn1,n2,...,nk )v)i

=
∑
j∈Vk

L(Kn1,n2,...,nk )i jv j = −
∑
j∈Vk

v j = 0 = (n − nk)vi.

Also, for any i such that i ∈ Vk (or π(i) = k), we have

(L(Kn1,n2,...,nk )v)i =
∑
j∈Vk

L(Kn1,n2,...,nk )i jv j = (n − nk)vi.

Therefore, v satisfies L(Kn1,n2,...,nk )v = (n−nk)v which com-
pletes the proof. □

Lemma 3 If nk−1 = 1,ND(Kn1 ,n2 ,...,nk )(Kn1,n2,...,nk ) is the empty
set. If nk−1 = nk = 2, all graphs in ND(Kn1 ,n2 ,...,nk )(Kn1,n2,...,nk )
are isomorphic to Kn1,n2,...,nk .

Proof: Suppose first that nk = 1. Then Kn1,n2,...,nk is a com-
plete graph, and hence ND(Kn1 ,n2 ,...,nk )(Kn1,n2,...,nk ) = ∅. Sup-
pose next that nk−1 = 1 and nk ≥ 2. In this case, because all
pairs of vertices, except pairs of vertices in Vk, are adjacent,
there are no four vertices p, q, r, s such that E(Kn1,n2,...,nk )
contains both {p, q} and {r, s} but neither {p, r} nor {q, s}.
Suppose finally that nk−1 = nk = 2. In this case, there
exist four vertices p, q, r, s such that E(Kn1,n2,...,nk ) contains
both {p, q} and {r, s} but neither {p, r} nor {q, s}. We assume
without loss of generality that Vk−1 = {p, r} and Vk = {q, s}.
Then p, q, r, s are adjacent to all vertices except r, s, p, q,
respectively. Let G be the graph obtained from Kn1,n2,...,nk

by applying a 2-switch to these four vertices as shown in
Fig.1. Then, in G, vertices p, q, r, s are adjacent to all ver-
tices except q, p, s, r, respectively. If we relabel vertices in
G as q → r and r → q, the resulting graph is identical to
Kn1,n2,...,nk . Therefore, G is isomorphic to Kn1,n2,...,nk . □

From Lemmas 1 and 3, we have the following result.

Corollary 1 If nk−1 = 1 or nk−1 = nk = 2, Kn1,n2,...,nk is an
ACM graph in GD(Kn1 ,n2 ,...,nk ).

Now we give the first main theorem of this paper.

Theorem 1 Any Kn1,n2,...,nk with nk ≥ 4 is an ACLM graph
in GD(Kn1 ,n2 ,...,nk ).

Proof: If ND(Kn1 ,n2 ,...,nk )(Kn1,n2,...,nk ) = ∅ then Kn1,n2,...,nk is an
ACLM graph as explained in the previous section. Thus
we hereafter assume that ND(Kn1 ,n2 ,...,nk )(Kn1,n2,...,nk ) , ∅. Let
p, q, r, s be any four vertices such that E(Kn1,n2,...,nk ) con-
tains {p, q} and {r, s} but neither {p, r} nor {q, s}. Let G1 be
the graph obtained from Kn1,n2,...,nk by removing {p, q}, G2
be the graph obtained from G1 by adding {p, r}, G3 be the
graph obtained from G2 by removing {r, s}, and G be the

graph obtained from G3 by adding {q, s}. Then it is obvi-
ous that G ∈ ND(Kn1 ,n2 ,...,nk ). We show in the following that
λ2(G) ≤ λ2(Kn1,n2,...,nk ). By Interlace theorem [7], we have

λ2(G1) ≤ λ2(Kn1,n2,...,nk ) ≤ λ3(G1)
≤ λ3(Kn1,n2,...,nk ) ≤ λ4(G1) ≤ λ4(Kn1,n2,...,nk ) ,
λ3(G1) ≤ λ3(G2) ≤ λ4(G1) ,
λ3(G3) ≤ λ3(G2) ≤ λ4(G3) ,

λ2(G) ≤ λ3(G3) ≤ λ3(G) ≤ λ4(G3) ≤ λ4(G) .

From these inequalities, we have λ2(G) ≤ λ4(Kn1,n2,...,nk ).
Also, it follows from the assumption nk ≥ 4 that the multi-
plicity nk −1 of λ2(Kn1,n2,...,nk ) is at least three, which means
that λ4(Kn1,n2,...,nk ) = λ2(Kn1,n2,...,nk ). Therefore, we conclude
that λ2(G) ≤ λ2(Kn1,n2,...,nk ). □

We next give the second main theorem of this paper,
which takes a different approach to show that any Kn1,n2,...,nk

with nk−1 ≥ 2 and nk ≥ 3 is an ACLM graph.

Theorem 2 Any Kn1,n2,...,nk is an ACLM graph in
GD(Kn1 ,n2 ,...,nk ). Furthermore, if nk−1 ≥ 2 and nk ≥ 3, there
exists at least one graph G in ND(Kn1 ,n2 ,...,nk )(Kn1,n2,...,nk ) such
that

λ2(G) ≤ λ2(Kn1,n2,...,nk ) − 1 +
2
nk
≤ λ2(Kn1,n2,...,nk ) −

1
3
. (1)

Proof: Because it has already been shown by Corollary 1
that Kn1,n2,...,nk is an ACM graph in GD(Kn1 ,n2 ,...,nk ) if nk−1 = 1
or nk−1 = nk = 2, we assume in the following that nk−1 ≥ 2
and nk ≥ 3. Let p, q, r, s be any four vertices such that
E(Kn1,n2,...,nk ) contains {p, q} and {r, s} but neither {p, r} nor
{q, s} (Existence of such four vertices is guaranteed by the
assumption that nk−1 ≥ 2 and nk ≥ 3). Then we easily see
that

π(p) = π(r) , π(q) = π(s) . (2)

Let G be the graph obtained from Kn1,n2,...,nk by applying a
2-switch to four vertices p, q, r and s as shown in Fig. 1.
Then the Laplacian matrix of G is given by

L(G) = L(Kn1,n2,...,nk ) − M

where M = (mi j) is given by

mi j =


−1, if (i, j) ∈ {(p, q), (q, p), (r, s), (s, r)} ,
1, if (i, j) ∈ {(p, r), (r, p), (q, s), (s, q)} ,
0, otherwise .

Since λ2(G) is expressed as

λ2(G) = min
vT1=0, ∥v∥=1

vTL(G)v,

we can find an upper bound for λ2(G) by substituting any
v such that vT1 = 0 and ∥v∥ = 1 into vTL(G)v. Let us
now assume that v satisfies the condition that vi = 0 for
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all i < Vk in addition to vT1 = 0 and ∥v∥ = 1. Then, by
Lemma 2, v is a unit eigenvector of L(Kn1,n2,...,nk ) associated
with λ2(Kn1,n2,...,nk ). We therefore have

λ2(G) ≤ vTL(G)v
= λ2(Kn1,n2,...,nk ) − vTMv

= λ2(Kn1,n2,...,nk )
+ 2vpvq + 2vrvs − 2vpvr − 2vqvs . (3)

We first consider the case where p < Vk (or π(p) , k) and
q < Vk (or π(q) , k). In this case, because vp = vq = vr =

vs = 0, it follows from (3) that λ2(G) ≤ λ2(Kn1,n2,...,nk ). We
next consider the case where either p ∈ Vk (or π(p) = k) or
q ∈ Vk (or π(q) = k) holds. We assume without loss of gen-
erality that the former holds. In this case, because vq = vs =

0, it follows from (3) that λ2(G) ≤ λ2(Kn1,n2,...,nk ) − 2vpvr.
In the following, we focus our attention on the minimum
value of the second term −2vpvr under the constraints on
v mentioned above. This minimum value can be found by
solving the mathematical programming problem:

minimize −2vpvr

subject to
∑

i∈Vk
vi = 0 ,∑

i∈Vk
v2

i = 1 .
(4)

Using the method of Lagrange multiplier, we obtain an op-
timal solution of (4) which is given by

v∗i =
{ µ1

2(1−µ2) , if i ∈ {p, r},
− µ1

2µ2
, if i ∈ Vk \ {p, r}

(5)

where

µ1 =

√
8(nk − 2)

n3
k

and µ2 =
nk − 2

nk
.

Substituting (5) to the objective function of (4), we have

−2vpvr = −1 +
2
nk
.

Therefore, we have

λ2(G) ≤ λ2(Kn1,n2,...,nk ) − 1 +
2
nk

which completes the proof. □

In order to see how tight the upper bound given in (1)
is, we consider a graph that can be obtained from K1,1,2,4
shown in Fig. 2 by applying a 2-switch. Removing edges
{3, 5} and {4, 6} and adding new edges {3, 4} and {5, 6}, we
have the graph shown in Fig. 3. The algebraic connectivity
of the obtained graph is 3.2679492, while the right-hand
side of (1) is given by

λ2(K1,1,2,4) − 1 +
2
4
= 3.5

which is slightly greater than the true value.

Figure 3: The graph obtained from K1,1,2,4 shown in Fig. 2
by removing {3, 5} and {4, 6} and adding {3, 4} and {5, 6}.
The algebraic connectivity of this graph is 3.2679492.

4. Conclusion

We have proved that any complete multipartite graph
Kn1,n2,...,nk is an ACLM graph in the space of graphs with the
same degree sequence. We have also proved that if nk−1 ≥ 2
and nk ≥ 3 then there are four vertices in Kn1,n2,...,nk such that
the application of a 2-switch to the four vertices decreases
the algebraic connectivity by at least 1/3. One of the future
problems is to prove that any complete multipartite graph
is an ACM graph.
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