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Abstract—A new algorithm is proposed for finding DC
solutions of piecewise-linear circuits using separable pro-
gramming. In this algorithm, we formulate the problem
of finding DC solutions by a separable programming prob-
lem, and solve it by the modified simplex method using
the restricted-basis entry rule. The proposed algorithm is
globally convergent and can find all solutions of piecewise-
linear resistive circuits.

1. Introduction

DC analysis of nonlinear circuits is one of the most cen-
tral tasks in circuit simulation. In this paper, we discuss the
problem of finding DC solutions of piecewise-linear (PWL)
circuits that are obtained by PWL approximation of nonlin-
ear functions.

In the DC analysis of PWL circuits, systems of PWL
equations are solved by some numerical method. Several
methods have been proposed for solving PWL equations;
among them, the PWL Newton-Raphson method and the
Katzenelson method are well-known [1],[2]. However, the
Newton-Raphson method is not globally convergent and
often fails to converge unless the initial point is sufficiently
close to the solution. On the other hand, the convergence
of the Katzenelson method (more properly, thegeneralized
Katzenelson method [3]) is guaranteed under suitable con-
ditions. Furthermore, as more extended methods, the al-
gorithms using simplicial subdivision [4] and rectangular
subdivision [5] have also been proposed.

In this paper, we propose a new algorithm using a com-
pletely different approach. In this algorithm, we formu-
late the problem of finding DC solutions by a constrained
optimization problem involving only linear functions, and
solve it by the modified simplex method of separable pro-
gramming. This algorithm is not only globally conver-
gent but also can find all solutions of PWL resistive cir-
cuits. Moreover, the proposed algorithm can be easily im-
plemented by modifying conventional linear programming
(LP) codes a little.

2. Proposed Algorithm

2.1. A System of PWL Equations to be Solved

Consider a PWL resistive circuit containingn PWL re-
sistors, linear resistors, linear controlled sources, and in-

dependent sources. Such a circuit can be described by a
system ofn PWL equations [1]

f (x)
4
= Pg(x) + Qx− r = 0 (1)

where x = (x1, x2, · · · , xn)T ∈ Rn is a variable vector,
s = (s1, s2, · · · , sn)T ∈ Rn is a constant vector,P andQ are
n×n constant matrices,g(x) = [g1(x1),g2(x2), · · · ,gn(xn)]T

is a continuous PWL function with component functions
gi(xi) : R1 → R1 (i = 1,2, · · · ,n), and f (x) = [ f1(x), f2(x),
· · · , fn(x)]T is a continuous PWL function fromRn to Rn.
In this paper, we discuss the problem of finding solutions
of (1) contained in ann-dimensional boxD = ([l1,u1], · · · ,
[ln,un])T ⊂ Rn. Notice that f (x) is a separable function,
namely, it can be expressed as:

fi(x) =

n∑

j=1

fi j (x j), i = 1,2, · · · ,n. (2)

Assume that we have chosen a partitioning

l j = x(0)
j < x(1)

j < x(2)
j < · · · < x(K)

j = u j (3)

of the interval [l j ,u j ] and have defined a PWL function
fi j (x j) that is linear over the interval [x(k−1)

j , x(k)
j ] for j =

1,2, · · · ,n andk = 1,2, · · · ,K (see Figure 1). For the sim-
plicity of notation, we have assumed that the number of
partitioning is the same for allx j-directions.

For any pointx(k)
j ≤ x j ≤ x(k+1)

j , fi j (x j) can be expressed
as

fi j (x j) = λ(k)
j fi j (x

(k)
j ) + λ(k+1)

j fi j (x
(k+1)
j ) (4)
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Figure 1: PWL functionfi j (x j).
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with

x j = λ(k)
j x(k)

j + λ(k+1)
j x(k+1)

j (5)

and

λ(k)
j + λ(k+1)

j = 1, λ(k)
j ≥ 0, λ(k+1)

j ≥ 0. (6)

Generalizing this representation,fi j (x j) can be expressed
as

fi j (x j) =

K∑

k=0

λ(k)
j fi j (x

(k)
j )

where x j =

K∑

k=0

λ(k)
j x(k)

j ,

K∑

k=0

λ(k)
j = 1, λ(k)

j ≥ 0.

(7)

Hence, (1) is reformulated as follows:

n∑

j=1

K∑

k=0

λ(k)
j fi j (x

(k)
j ) = 0, i = 1,2, · · · ,n (8a)

x j =

K∑

k=0

λ(k)
j x(k)

j , j = 1,2, · · · ,n (8b)

K∑

k=0

λ(k)
j = 1 (8c)

λ(k)
j ≥ 0, j = 1,2, · · · ,n; k = 0,1, · · · ,K (8d)

λ(k)
j λ

(k′)
j = 0 if k′ > k + 1; k = 0,1, · · · ,K − 1.

(8e)

Condition (8e) merely requires that no more than two of
the λ(k)

j ’s be positive and if two are positive, sayλ(k)
j and

λ(k′)
j with k′ > k, then it must be true thatk′ = k + 1, that

is, theλ j ’s must be adjacent. This restriction ensures that
only points lying on the PWL segments are considered part
of the PWL function. To see this, note from Figure 1 that if
λ(0)

j andλ(1)
j were positive andλ(2)

j to λ(K)
j were zero, then

the resulting point would lie on the line segment joining
points A and B, a portion of the PWL function. However,
if, sayλ(0)

j andλ(2)
j were allowed to be positive and the other

λ j ’s were all equal to zero, then a point on the line connect-
ing A and C, which is not part of the PWL function, would
be generated. Moreover if, say,λ(2)

j alone were positive,
then from condition (8c) it would have to be equal to 1, and
the point C lying on the PWL function would be generated.

2.2. DC Analysis Using Separable Programming

Separable programming is a technique first proposed by
C. E. Miller [6] in 1963 by means of which certain types
of nonlinear constrained optimization problems can be re-
formulated into equivalent problems involving only linear
functions. The resulting approximating problems are then
solved using a specially modified simplex method. In this
paper, we use this idea for solving (1).

Consider the separable programming problem:

max (arbitraly constant)

subject to
n∑

j=1

K∑

k=0

λ(k)
j fi j (x

(k)
j ) = 0, i = 1,2, · · · ,n

K∑

k=0

λ(k)
j = 1

λ(k)
j ≥ 0, j = 1,2, · · · ,n; k = 0,1, · · · ,K

λ(k)
j λ

(k′)
j = 0 if k′ > k + 1; k = 0,1, · · · ,K − 1,

(9)
whereλ(k)

j ( j = 1,2, · · · ,n; k = 0,1, · · · ,K) are the vari-
ables. Note that the constraints of (9) is equivalent to (1)
andx ∈ D. Hence, the solution of (1) that lies inD can be
obtained by solving (9) and calculatingx by (8b).

The separable programming problem (9) can be solved
by conventional LP codes. The only feature requiring spe-
cial attention is condition (8e). This restriction can, how-
ever, be readily accommodated, since in the ordinally sim-
plex method the basic variables are the only ones that can
be nonzero. Thus, prior to entering one of theλ j ’s into
the basis (which will make it nonzero), a check is made to
ensure that no more than one otherλ j associated with the
corresponding variablex j is in the basis (is nonzero) and, if
it is, that theλ j ’s are adjacent. If these checks are not satis-
fied, then theλ j to be entered into the basis is rejected and
another is selected. This modification to the normal sim-
plex rules required to ensure that condition (8e) is always
met is known asrestricted-basis entry rule[7]. Recall that
the reason for imposing condition (8e) and for restricted
basis entry is to ensure that the points generated lie on the
PWL segments rather than between them.

In the proposed algorithm, we solve (9) by the modified
simplex method mentioned above. It has been shown that
the modified simplex method using the restricted-basis en-
try rule will yield local maximal of the separable program-
ming (9) [7]. Since the constraints of (9) is equivalent to
(1) andx ∈ D, the feasible region of (9) is a set of points
that satisfiesf (x) = 0. Hence, we can obtain the solution
of (1) at the optimal point of (9)1.

Since the modified simplex method using the restricted-
basis entry rule always converges to a local maximal [7],
the global convergence of the proposed algorithm is guar-
anteed. Moreover, the proposed algorithm can be easily
implemented by modifying conventional LP codes a little

1The simplex method consists of Phase I and Phase II. In Phase I, we
find a basic feasible solution using artificial variables. In Phase II, we
optimize the objective function starting with the basic feasible solution
obtained by Phase I. If there is no feasible solution, then Phase I terminates
with that information [7]. Notice that, since the objective function of (9)
is a constant, the simplex method for (9) consists of Phase I only.
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Figure 2: Transistor circuit 1.
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Figure 3: Transistor circuit 2.

3. Finding All Solutions of PWL Resistive Circuits

The proposed algorithm can find all solutions of PWL re-
sistive circuits by introducing a simple technique. Suppose
that we have applied the proposed algorithm to a multistate
circuit and have obtained a solutionα1 ∈ Rn by solving (9).
Let ([x(k1)

1 , x(k1+1)
1 ], · · · , [x(kn)

n , x(kn+1)
n ])T be the linear region

containingα1, wherek j ∈ {0,1, · · · ,K − 1} and there is a
one-to-one correspondence between (k1, k2, · · · , kn)T and a
linear region. In this case,λ

(k j )
j +λ

(k j+1)
j = 1 ( j = 1,2, · · · ,n)

hold. Then, it is clear thatα1 is the only solution that satis-
fies

n∑

j=1

(λ
(k j )
j + λ

(k j+1)
j ) = n, (10)

and for other solutions,

n∑

j=1

(λ
(k j )
j + λ

(k j+1)
j ) < n (11)

holds. Hence, by adding the constraint (11) to the con-
straints of (9), and by solving the new separable program-
ming problem (9) with (11), we can find the second solu-
tion α2 that is different fromα1. Repeating the same pro-
cedure, we can find the third solutionα3. Thus, we can
obtain all solutions of (1) inD by solving (9) with the new
constraintsN + 1 times, whereN denoted the number of
solutions. If the algorithm terminates with the information
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Figure 4: Transistor circuit 3.
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Figure 5: Transistor circuit 4.

that the feasible region is empty, then we have obtained all
solutions.

4. Numerical Examples

We implemented the proposed algorithm using the pro-
gramming language C on a Dell Precision T7500 (CPU: In-
tel Xeon 3.33GHz). In this section, we show some numer-
ical examples. In the implementation, we used the FOR-
TRAN program of separable programming written in [8]
as a reference.

Example 1: We first consider the transistor circuits
shown in Figures 2–4 [9]. We applied the proposed al-
gorithm to these circuits. We considered the initial box
D = ([−20,0.5], · · · , [−20,0.45])T and used the PWL func-
tion with ten segments that are linear on [−20,0], [0,0.05],
[0.05,0.1], . . . , [0.4,0.45]. Table 1 shows the solution of
the example circuit in Figure 2 obtained by the proposed
algorithm. Table 2 shows the number of iterations (pivot-
ings) of the modified simplex method and the CPU time.
The CPU time was too small and unmeasurable.

Example 2: We next consider the circuit contain-
ing n tunnel diodes discussed in [9]. The initial box is
D = ([−1,4], · · · , [−1,4])T , and the characteristic of tun-
nel diodes is represented by a PWL function with ten seg-
ments. We applied the proposed algorithm to this circuit
for variousn. Table 3 shows the number of iterations (piv-
otings) of the modified simplex method and the CPU time.
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Table 1: Solution of the example circuit 1.

Variable Solution

vbe1 0.308463
vbc1 −7.886730
vbe2 0.358434
vbc2 0.263821
vbe3 0.305233
vbc3 −8.121885
vbe4 0.358913
vbc4 0.266193

Table 2: Number of iterations and CPU time (Example 1).

Circuit n Iterations CPU time (s)

Figure 2 8 31 < 0.01
Figure 3 9 42 < 0.01
Figure 4 15 52 < 0.01
Figure 5 22 77 < 0.01

Table 3: Number of iterations and CPU time (Example 2).

n Iterations CPU time (s)

10 42 < 0.01
100 490 0.22

1000 4 851 259
2000 10 609 2 255
3000 14 176 6 277

It is seen that the proposed algorithm can solve large-scale
circuits in practical computation time. It is also seen that
the number of iterations is almost proportional ton. Since
the computational complexity of pivot operation isO(n2),
the CPU time is almost proportional ton3.

5. Conclusion

In this paper, a new algorithm has been proposed for
finding DC solutions of piecewise-linear circuits using sep-
arable programming. In the proposed algorithm, we for-
mulate the problem of finding DC solutions by a separa-
ble programming problem, and solve it by the modified
simplex method using the restricted-basis entry rule. The
proposed algorithm is globally convergent and can find all
solutions. Moreover, the proposed algorithm can be eas-
ily implemented by modifying the existing programs of the
simplex method a little.

The simplex method has several additional techniques
such as the sensitivity analysis. It is left as a future problem
to apply these techniques to the proposed algorithm.
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