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Abstract—In this paper, we study the constraint
control of nonlinear systems. We propose a generaliza-
tion of static relatively optimal control (ROC) meth-
ods so that it is applicable to nonlinear servo systems.
ROCmethods use a piecewise linear feedback for linear
systems to achieve a deadbeat control. To utilize the
idea of ROC, we assume that nonlinear systems are in-
crementally polytopic uncertain systems, and consider
the convergence to a region such that the error be-
tween the output and the constant reference command
is less than or equal to a% of the constant reference
command.

1. Introduction

For almost all practical control systems, we need
to take into account constraints on state and/or con-
trol input caused by amplitude limitation of state vari-
ables, saturation property of actuators and so on. If
we ignore these constraints, then the real performance
of the system degrades because of the wind-up phe-
nomena, or in worst cases the control system becomes
unstable. In these respects, extensive researches have
been done to cope with such constraints (see e.g. [1]–
[10] and references herein).

In this paper, we consider a nonlinear servo sys-
tem tracking a constant reference command. We pro-
pose a generalization of static relatively optimal con-
trol (ROC) methods proposed in [9], [10] so that it is
applicable to nonlinear servo systems. ROC methods
use piecewise linear feedback control for linear systems
to achieve a deadbeat (finite time convergence to an
equilibrium). To utilize the idea of ROC, we assume
that nonlinear systems are incrementally polytopic un-
certain systems. In this case, we can not achieve a
deadbeat because of uncertainty. Instead, we consider
the convergence to a region Ψ0 such that the error be-
tween the output and the constant reference command
is less than or equal to a% of the constant reference
command. We propose a new algorithm to compute
Ψ0 and regions Ψk to achieve finite time a% settling
time control. The proposing method reduces on-line
process time than traditional ROC methods [9], [10].

Notation For a matrix L, Li is the i-th row vector of
L. For a vector m, mi is the i-th element of m. For
a polytope (a bounded polyhedral set) P , N (P ) and
F(P ) denote the set of nodes and facets of P , respec-
tively. conv {·} denotes the convex hull. For a set X ,
intX denotes the interior of the sets X .

2. Servo System and Problem Setting

2.1. Servo System

Let us consider a discrete time nonlinear system
given by

xP [k + 1] = fP (xP [k], u[k]), y[k] = gP (xP [k]), (1)

where xP [k] ∈ RnP , u[k] ∈ R, and y[k] ∈ R are, re-
spectively, the state, the control input and the output
of the plant at time k ∈ Z+, and Z+ is the set of non-
negative integers. Functions fP : RnP × R → RnP

and gP : RnP → R are continuously differentiable.
We consider an integral type servo system. The con-

trol law is given by

xI [k + 1] = xI [k] + r[k]− y[k], (2)

u[k] = KPxP [k] +KIxI [k], (3)

where xI [k] ∈ R is the state of the integrator, r[k] is
the reference input to be managed which we will state
later.

Define

x =

[

xP

xI

]

∈ Rnx , B =

[

0
1

]

∈ Rnx , g(x) = gP (xP ),

f(x) =

[

fP (xP ,KPxP +KIxI)
−gP (xp) + xI

]

. (4)

Then the closed system is given

x[k + 1] = f(x[k]) +Br[k], y[k] = g(x[k]). (5)

System (5) has constrains given by

Lx[k] + dr[k]−m <= 0 ∀k >= 0, (6)

where L ∈ Rnc×nx and d,m ∈ Rnc .
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A typical constraint is the constraint on the magni-
tude of u[k] = Kx[k] such that umin <= u[k] <= umax,
where K =

[

KP KI

]

. In this case, nc = 2, and L, d
and m are given by

L =

[

K
−K

]

, d =

[

0
0

]

, m =

[

umax

−umin

]

.

2.2. Equilibrium and Stability

For (1), we assume the following.

Assumption 1 Let R ⊆ R be a bounded closed in-
terval. For each r̂ ∈ R, there exist x̂P (r̂) ∈ XP and
û(r̂) ∈ U = [umin, umax] such that

fP (x̂P (r̂), û(r̂)) = x̂P (r̂), gP (x̂P (r̂)) = r̂, (7)

where XP ⊆ RnP is a polytope such that 0 ∈ intXP

and U ⊆ R is a bounded interval such that umin <= 0 <=
umax.

We note the following.

Lemma 1 Assume that Assumption 1 is satisfied,
and KI in (3) is not 0. Then, for each r̂ ∈ R, set

x̂I(r̂) =
û(r̂)−KP x̂P (r̂)

KI

, x̂(r̂) =

[

x̂P (r̂)
x̂I(r̂)

]

. (8)

Then, x̂(r̂) is an equilibrium of (5) and we have

KP x̂P (r̂) +KI x̂I(r̂) = û(r̂), (9)

f(x̂(r̂)) +Br̂ = x̂(r̂), g(x̂(r̂)) = r̂. (10)

Assumption 2 The nonlinear system (1) is an in-
crementally polytopic uncertain system, that is, there
exist matrices {(Ap,q, Bp,q, Cp,q)}

Q
q=1 such that

[

∂fp
∂xp

(xp, u)
∂fp
∂u

(xp, u)
∂gp
∂xp

(xp) 0

]

∈ conv

{[

Ap,q Bp,q

Cp,q 0

]}Q

q=1

∀xP ∈ XP + x̂P , ∀u ∈ U , (11)

where

XP + x̂P (r) = {xP = x̃P + x̂P (r) : x̃P ∈ XP }. (12)

Applying the mean value theorem [11], we have the
following.

Lemma 2 Assume that Assumptions 1 and 2 are sat-
isfied. For a given r̂ ∈ R, let us consider errors

x̃[k] = x[k]− x̂(r̂) = f(x̃[k] + x̂(r̂))− f(x̂(r̂)), (13)

e[k] = r̂ − y[k] = g(x̂(r̂))− g(x[k]). (14)

Then we have

x̃[k] = A[k]x̃[k], A[k] ∈ conv {Aq, q ∈ Q}, (15)

e[k] = C[k]x̃[k], C[k] ∈ conv {Cq, q ∈ Q}, (16)

where Q = {1, 2, . . . , Q},

Aq =

[

Ap,q +Bp,qKP Bp,qKI

−Cp,q 1

]

, q ∈ Q, (17)

Cq =
[

Cp,q 0
]

, q ∈ Q. (18)

Assumption 3 There exists a Lyapunov function V :
Rnx → R+ satisfying

α|x| <= V (x) <= β|x| ∀x ∈ Rnx , (19)

for some positive numbers α and β, and the following
properties hold.

V (x+ x′) <= V (x) + V (x′) ∀x, x′ ∈ Rnx , (20)

V (τx) = τV (x) ∀τ >= 0, ∀x ∈ Rnx . (21)

Moreover there exists a number γ ∈ [0, 1) such that

V (Aqx) <= γV (x) ∀q ∈ Q, ∀x ∈ Rnx . (22)

Applying standard Lyapunov theory, we have the fol-
lowing.

Lemma 3 Assume that Assumptions 1 - 3 are satis-
fied. Then, a linear time varying system given by

x̃[k + 1] = A[k]x̃[k], A[k] ∈ conv {Aq, q ∈ Q} (23)

is exponentially stable.
Let

X = {x ∈ Rnx : x ∈ XP ×R}, (24)

Ω(ρ) = {x ∈ Rnx : V (x) <= ρ}, (25)

ρmax = max{ρ > 0 : Ω(ρ) ⊆ X}, (26)

Ω(ρ) + x̂ = {x = x̃+ x̂ : x̂ ∈ Ω(ρ)}. (27)

Then, under the absence of constraints, for each r̂ ∈
R, the equilibrium x̂(r̂) of (5) is exponentially sta-
ble and for each xko

∈ Ω(ρmax) + x̂(r̂), the solution
x[k; k0, xk0

, r̂] stays in Ω(ρmax) + x̂(r̂) and converges
to x̂(r̂), where x[k; k0, xk0

, r̂] denotes the solution of
(5) with the initial condition x[k0] = xk0

and the ref-
erence input r[k] ≡ r̂.

2.3. a% Settling Time and Problem Setting

Since r̂ = g(x̂(r̂)), y[k] = g(x[k]) converges to r̂. For
a given a > 0, we define a% settling time ks by

ks = min{k′ : |g(x[k; 0, x0, r])− r̂| <= ar|r̂|

∀k >= k′}, (28)
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where ar = a/100, N c = {1, 2, . . . , nc}, and r[k] = r̂
for k >= k′ and r[k] is managed so that (6) holds for
k >= 0.

We will compute a stability region Ψ0(r̂) such that
xk0

∈ Ψ0(r̂) means

x[k; k0, xk0
, r̂] ∈ Ψ0(r̂) ∀ k >= k0, (29)

x[k; k0, xk0
, r̂] → x̂(r̂), k → ∞, (30)

|Cq[x[k; k0, xk0
, r̂]− x̂(r̂)]| <= ar|r̂|

∀k >= k0, ∀q ∈ Q, (31)

Lix[k; k0, xk0
, r̂] + dir̂ <= mi ∀i ∈ N c, ∀k >= k0. (32)

In this paper, we propose a nonlinear feedback con-
trol law to manage r[k] so that the constraint (6) is
satisfied and that x[k; 0, x0, r] reaches Ψ0(r̂) at most
k0 steps, where k0 is the integer such that x0 ∈ Ψk0

(r̂)
and Ψk(r̂) is defined later.

3. Computation Ψ0(r̂)

Let P ⊆ Rnx be a polytope such that 0 ∈ intP,
and let NF = {1, 2, · · · , NF }. The normal vector ηj
of F j ∈ F(P ), j ∈ NF , is normalized in the sense that
ηTj x̃ = 1 for all x̃ ∈ F j , and P is represented by

P = {x ∈ Rnx : ηTj x <= 1, j ∈ NF }. (33)

A Polytopic Lyapunov Function (PLF) V (x) deter-
mined by P is given by

V (x̃) = max
j∈N F

ηTj x̃. (34)

Let us denote the boundary of the set P by ∂P.
Then V (x) = 1 for all x ∈ ∂P, and, hence, when we
define Ω(ρ) by (25), we have Ω(ρ) = ρP .

By the definition, V (x) satisfies (19) - (21) . Relat-
ing to (22), we have the following.

Lemma 4 Suppose that P is the polytope given by
(33). Let us consider (23). If

ηTℓ Aq

γ
∈ conv {ηTj , j ∈ NF } ∀ℓ ∈ NF , ∀q ∈ Q (35)

holds for some γ > 0, then (22) is satisfied.

When Q = {1}, that is, Q = 1, it is a good idea to
choose γ = max{|λj(A1)|, j = 1, 2, · · · , nx} + ε < 1,
where ε is a small positive number. When Q >= 2, an
initial approximation of γ > 0 can be computed by
solving an LMI.

Theorem 1 Let P be the polytope given by (33). As-
sume that Assumptions 1 - 3 are satisfied. Moreover,

we assume that (35) is satisfied for some γ ∈ (0, 1),
and that following conditions hold.

± C̃q =
±Cq

ar|r̂|
∈ conv {ηTj , j ∈ NF } ∀q ∈ Q, (36)

m̃i(r̂) = mi − Lix̂(r̂)−Dir̂ > 0 ∀i ∈ N c, (37)

L̃i =
Li

m̃i(r̂)
∈ conv {ηTj , j ∈ NF } ∀i ∈ N c. (38)

Then, (29) - (32) are satisfied for Ψ0(r̂) = P + x̂(r̂).

When a polytope P which includes 0 as an in-
terior point is given by (33), the polytope PD =
conv {ηj , j ∈ NF } is the dual polytope of P, that

is, normalized normal vectors of P are vertexes of PD.
Conversely, normalized normal vectors of PD are ver-
tices of P.

From Theorem 1, we have an algorithm to construct
the dual polytope PD of P. Let the polytope X in
Assumption 2 be given by X = {x : ηTi,0x <= 1, i =
1, 2, · · · , nX}.

Procedure comp Ψ
1. begin
2. k:=0;

3. Stack1 := {ηi,0}
nX
i=1

∪ {C̃q,−C̃q}
Q
q=1

∪ {L̃i}
nc
i=1

;

4. PD := conv {Stack1}; F := N (PD);
5. Node1 := F ; Stack1 := ∅;
6. for η ∈ Node1 begin
6.1. for Aq ∈ A begin
6.1.1. if (AT

q η/γ /∈ PD) begin
6.1.1.1. Stack1 := Stack1 ∪AT

q ηℓ/γ;
6.1.2. end;
6.2. end;
7. end;
8. if (Stack1 6= ∅) begin;
8.1. PD := conv {Stack1,F}; F := N (PD);
8.2. Stack1 := ∅; k := k + 1; goto 5
9. end;
10. end;

In comp Ψ, A = {Aq, q ∈ Q}.
It is guaranteed that comp Ψ stops in a finite itera-

tion under the condition (35).

4. Nonlinear Feedback Control Law

The polytope computed by applying comp Ψ de-
pends on r̂ ∈ R. In the following, we fix a r̂ ∈ R, and
for simplicity of notation we drop (r̂) in representing
P(r̂), Ψ0(r̂) and x̂(r̂).

When Ψ0 = P + x̂ was computed, compute Φk and
Ψk for k = 1, 2, . . . , kmax in the following way.

Φk = {x̃ =
[

xT r
]T

: (Aqx+Br) ∈ Ψk−1 ∀Aq ∈ A,

Lx+ dr <= m}. (39)
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Let N (Φk) = {x̃k,ℓ =
[

xT
k,ℓ rk,ℓ

]T
}
NNk

ℓ=1 , and com-

pute Ψk = conv {xk,ℓ}
NNk

ℓ=1 . For each k, let

F(Ψk) = {Fk,j}
NFk

j=1 , and for each Fk,j , let N (Fk,j) =

{xk,j,i}
NNk,j

i=1 . Define a pyramid Ψk,j = conv {{x̂} ∪
N (Fk,j)}. Then

intΨk,j ∩ intΨk,j′ , j 6= j′, Ψk =

NFk
⋃

j=1

Ψk,j . (40)

Each xk,j,i corresponds to an xk,ℓ ∈ N (Ψk), where
ℓ depends on (j, i), and we denote ℓ as ℓ(j, i) and
we represent xk,ℓ as xk,ℓ(j,i). Let rk,ℓ(j,i) correspond

to xk,ℓ(j,i), that is, x̃k,ℓ(j,i) =
[

xT
k,ℓ(j,i) rk,ℓ(j,i)

]T

∈

N (Φk). For convenience, let xk,ℓ(j,0) = x̂ and
rk,ℓ(j,0) = r̂.
We propose a piecewise linear control law r(x).

When x ∈ Ψk,j , there exists {λi ∈ [0, 1]}
NNk,j

i=0 such

that

NNk,j
∑

i=0

λi = 1 and x =

NNk,j
∑

i=0

λixk,ℓ(j,i) , and r(x) is

given by

r(x) =











NNk,j
∑

i=0

λirk,ℓ(j,i), if x ∈ (Ψk,j\Ψ0),

r̂, if x ∈ Ψ0.

(41)

Theorem 2 Assume that Ψ0 = P+ x̂, {Φk,Ψk}
kmax

k=1

are computed. Then, we have

Ψ0 ⊆ Ψ1 ⊆ . . . ⊆ Ψkmax
. (42)

If x0 ∈ Ψk0
for some k0 < kmax and if we apply the

control law (41), then constraints (6) hold and a% set-
tling time k0 is achieved.

If Ψk,j is a simplex, then NNk.j
= nx,

rankXk,j = nx and r(x) in (41) is given
by r(x) = Rk,jX

−1
k,jx + r̂, where Xk,j =

[

xk,j,1 − x̂ xk,j,2 − x̂ · · · xk,j,nx
− x̂

]

and Rk,j =
[

rk,j,1 − r̂ rk,j,2 − r̂ · · · rk,j,nx
− r̂

]

.

5. Concluding Remark

In this paper, we studied the constraint control of
nonlinear servo systems. The contribution of this pa-
per are to derive Theorems 1 and 2 and to propose a
new control law (41), This control law is quite similar
to those in [9], [10], but it is different because we do
not consider decompositions of Ψk\Ψk−1 into union
of simplexes. As a result, our implementation reduces
on-line process time than the previous implementation
in [9], [10].
Because of the lack of spaces, we do not in-

clude proofs of lemmas and theorems. The proofs
can be obtained by requiring them by email to
tcs.y.ohta@people.kobe-u.ac.jp .
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