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Abstract—In this paper, we study the constraint
control of nonlinear systems. We propose a generaliza-
tion of static relatively optimal control (ROC) meth-
ods so that it is applicable to nonlinear servo systems.
ROC methods use a piecewise linear feedback for linear
systems to achieve a deadbeat control. To utilize the
idea of ROC, we assume that nonlinear systems are in-
crementally polytopic uncertain systems, and consider
the convergence to a region such that the error be-
tween the output and the constant reference command
is less than or equal to a% of the constant reference
command.

1. Introduction

For almost all practical control systems, we need
to take into account constraints on state and/or con-
trol input caused by amplitude limitation of state vari-
ables, saturation property of actuators and so on. If
we ignore these constraints, then the real performance
of the system degrades because of the wind-up phe-
nomena, or in worst cases the control system becomes
unstable. In these respects, extensive researches have
been done to cope with such constraints (see e.g. [1]-
[10] and references herein).

In this paper, we consider a nonlinear servo sys-
tem tracking a constant reference command. We pro-
pose a generalization of static relatively optimal con-
trol (ROC) methods proposed in [9], [10] so that it is
applicable to nonlinear servo systems. ROC methods
use piecewise linear feedback control for linear systems
to achieve a deadbeat (finite time convergence to an
equilibrium). To utilize the idea of ROC, we assume
that nonlinear systems are incrementally polytopic un-
certain systems. In this case, we can not achieve a
deadbeat because of uncertainty. Instead, we consider
the convergence to a region ¥ such that the error be-
tween the output and the constant reference command
is less than or equal to a% of the constant reference
command. We propose a new algorithm to compute
¥y and regions W, to achieve finite time a% settling
time control. The proposing method reduces on-line
process time than traditional ROC methods [9], [10].

Simomagari 959-1, Ritto-shi 520-3026 Japan

Notation For a matrix L, L; is the i-th row vector of
L. For a vector m, m; is the i-th element of m. For
a polytope (a bounded polyhedral set) P, N(P) and
F(P) denote the set of nodes and facets of P, respec-
tively. conv {-} denotes the convex hull. For a set X,
int X denotes the interior of the sets X.

2. Servo System and Problem Setting

2.1. Servo System

Let us consider a discrete time nonlinear system
given by

zplk +1] = fe(zp(k], ulk]), ylk] =gp(zp[k]), (1)

where zp[k] € R"7, u[k] € R, and y[k] € R are, re-
spectively, the state, the control input and the output
of the plant at time k € Z, and Z is the set of non-
negative integers. Functions fp : R"” x R — R"?
and gp : R"” — R are continuously differentiable.

We consider an integral type servo system. The con-
trol law is given by

zilk + 1] = xr[k] + r[k] — y[k], (2)
u[k:] = Kpl‘p[k‘} +K[$[[k], (3)
where x;[k] € R is the state of the integrator, r[k] is

the reference input to be managed which we will state
later.

Define
x = [mp] eR", B= [0} eR"™, g(x)=gp(zp),
Xy 1
| fplep, Kprp + Kray)
fla) = | rlem Ko+ Kaen). (1)

Then the closed system is given
wlk + 1] = f(«[k]) + Brk], y[k] =g(z[k]).  (5)
System (5) has constrains given by
Lkl +drlk] —m <0 Vk 20, (6)

where L € R™ ™ and d,m € R"°.
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A typical constraint is the constraint on the magni-
tude of ulk] = Kx[k] such that umin < u[k] £ Umax,
where K = [Kp KI}. In this case, n, = 2, and L, d
and m are given by

p=[5] a=) m=]

2.2. Equilibrium and Stability

For (1), we assume the following.

Assumption 1 Let R C R be a bounded closed in-
terval. For each © € R, there exist ip(7) € Xp and
() € U = [Umin, Umax] Such that

fp(@p(F),a(r)) = 2p(7), gp(Zp(r)) =7, (7)

where Xp C R™ is a polytope such that 0 € int Xp
and U C R is a bounded interval such that uymy, < 0 <

Umax -
We note the following.

Lemma 1 Assume that Assumption 1 is satisfied,
and K1 in (3) is not 0. Then, for each # € R, set
. a(r) —Kp:fcp(f)7 () = [:%p(f)

JCI(T) = K; i’[(f):| : (8)

Then, &(7) is an equilibrium of (5) and we have

Assumption 2 The nonlinear system (1) is an in-
crementally polytopic uncertain system, that is, there
exist matrices {(Ap.q, Bpg; C}Lq)}qQ:1 such that

af, of,
g (epw) Frlpw)] { {A B] }Q
9gp C, 0
T (2p) 0 p.q q=1
Vep e Xp+2p, Yuel, (].].)
where

Xp +£%p(7”) = {xp =2ap +fp(7‘) 1 ITp € Xp} (12)

Applying the mean value theorem [11], we have the
following.

Lemma 2 Assume that Assumptions 1 and 2 are sat-
isfied. For a given 7 € R, let us consider errors

B[k = wlk] — &(r) = f(@[k] + 2(7)) — f(2(F)),
elk] =7 — ylk] = g(2(7)) — g(«[k]).

Then we have

i[k] = A[k)Z[k], A[k] € conv{A,, ¢€ Q}, (15)
elk] = C[k)z[k], C[k] € conv{Cy,q € Q}, (16)
where @ = {1,2,...,Q},
4, = | +CB paltp BP’EK’ L geQ, (17
I 22
Cq=1[Cpq 0], ¢ Q. (18)
[ |

Assumption 3 There exists a Lyapunov function V :
R" — R satisfying
alz) £V (z) L Blz| Yo e R, (19)

for some positive numbers o and 3, and the following
properties hold.

V(z+a2") < V(z)+ V(z') Va,2’ € R™,
V(ire) =7V (x) Vr 20, Ve € R".
Moreover there exists a number v € [0,1) such that

V(Agz) < 7V (x)

Vg e Q, Vx e R". (22)

Applying standard Lyapunov theory, we have the fol-
lowing.

Lemma 3 Assume that Assumptions 1 - 3 are satis-
fied. Then, a linear time varying system given by

zlk + 1] = Alk]z[k], A[k] € conv{A4,, g€ Q} (23)

is exponentially stable.

Let
X={zreR": xe€Xp xR} (24)
Qp) ={z e R™ : V(z) = p}, (25)
Pmax = max{p > 0: Q(p) C X}, (26)
Qp)+i={x=2+3:2€Qp)}. (27)

Then, under the absence of constraints, for each 7 €
R, the equilibrium (7)) of (5) is exponentially sta-
ble and for each xi, € Qpmax) + Z(7), the solution
xlk; ko, iy, 7] stays in Q(pmax) + Z(7) and converges
to &(7), where x[k;ko, Tk, 7] denotes the solution of
(5) with the initial condition x[ko] = xr, and the ref-
erence input r[k] = 7. |

2.3. a% Settling Time and Problem Setting

Since 7 = ¢g(Z(7)), y[k] = g(z[k]) converges to 7. For
a given a > 0, we define a% settling time ks by

ks = min{k’ : |g(z[k; 0, z0,7]) — 7| < a,|7|

VE= KDY, (28)
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where a, = a/100, N. = {1,2,...,n.}, and r[k] = 7
for k = £’ and r[k] is managed so that (6) holds for
k= 0.

We will compute a stability region g (7) such that
Tk, € Up(7) means

[k ko, wry, 7] € Wo(7) Yk = ko, (29)
[k ko, ory, 7] = 2(F), &k — oo, (30)
|Cqlzlk; ko, ko, 7] — 2(7)]] < ar|7|

Vk =k, Vg€ Q, (31)

Lixlk; ko, wp,, 7] + dit < m; Vi € N, Vk 2 ko. (32)

In this paper, we propose a nonlinear feedback con-
trol law to manage r[k] so that the constraint (6) is
satisfied and that z[k;0,xg,7] reaches Wy(7) at most
ko steps, where kg is the integer such that xo € Uy, (7)
and W (7) is defined later.

3. Computation V()

Let P C R™ be a polytope such that 0 € intP,
and let Np = {1,2,--- ,Np}. The normal vector 7,
of Fj € F(P), j € Np, is normalized in the sense that
n} & =1 for all Z € F;, and P is represented by

P={zeR™:n a<1, jEeNF} (33)

A Polytopic Lyapunov Function (PLF) V(x) deter-

mined by P is given by

V(%) = max 7 . (34)

JEN F
Let us denote the boundary of the set P by OP.
Then V(z) = 1 for all x € 9P, and, hence, when we
define 2(p) by (25), we have Q(p) = pP.
By the definition, V() satisfies (19) - (21) . Relat-
ing to (22), we have the following.

Lemma 4 Suppose that P is the polytope given by
(33). Let us consider (23). If

TA
% € conv{an,jE./\/F} Ve e Ng, Vge Q (35)

holds for some v > 0, then (22) is satisfied. [ |

When Q = {1}, that is, Q = 1, it is a good idea to
choose v = max{|\;j(41)],j = 1,2,--- ,ny} +¢e < 1,
where ¢ is a small positive number. When @ = 2, an
initial approximation of v > 0 can be computed by
solving an LMI.

Theorem 1 Let P be the polytope given by (33). As-
sume that Assumptions 1 - 8 are satisfied. Moreover,

we assume that (35) is satisfied for some v € (0,1),
and that following conditions hold.

~ +C
+C, = . |;‘ IS Conv{an, jeNFp} Vge Q, (36)
mi(7) = m; — Lig(7) — Dit > 0 ¥i e No,  (37)
. L:
[, = ——* T . .
C ) € conv{n;, jeENp} VieN. (38)

Then, (29) - (32) are satisfied for Uo(r) = P + (7).
|

When a polytope P which includes 0 as an in-
terior point is given by (33), the polytope PP =
conv{n;, j € N g} is the dual polytope of P, that
is, normalized normal vectors of P are vertexes of P,
Conversely, normalized normal vectors of PP are ver-
tices of P.

From Theorem 1, we have an algorithm to construct
the dual polytope PP of P. Let the polytope X in
Assumption 2 be given by X = {z : nljz < 1, i=
1,2,--+ ,nx}. ’

Procedure comp_W¥

1. begin

2. k:=0;

3 Stackl := {ni0};25 U {éqv _éq}qul U {i/l =13
4. PP .= conv{Stackl}; F := N(PP);

5 Nodel := F; Stackl := {;

6. for n € Nodel begin

6.1. for A; € A begin

6.1.1. if (ATn/y ¢ PP) begin

6.1.1.1. Stackl := Stackl U Alne/v;
6.1.2. end;

6.2. end;

7. end;

8. if (Stackl # 0) begin;

8.1. PP .= conv{Stackl, F}; F := N(PP);
8.2. Stackl :=0; k:=k+1; goto 5

9. end;

10. end;

In comp.¥, A={A,, ¢ Q}.
It is guaranteed that comp_W stops in a finite itera-
tion under the condition (35).

4. Nonlinear Feedback Control Law

The polytope computed by applying comp_-¥ de-
pends on 7 € R. In the following, we fix a # € R, and
for simplicity of notation we drop (#) in representing
P(7), Uo(7) and (7).

When ¥y =P + & was computed, compute ®; and
W, for k=1,2,..., kmax in the following way.

O, ={i=[27 r]": (A +Br) eV, VA, €A,
Lz +dr <m}. (39)
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Let N(®x) = {&re = [2f, rk,g]T}éV:Nl’“, and com-
conv {xk,g}iv:Nl’“ For each k, let
F(Uy) = {F )%, and for each Fyj, let N'(Fy;) =

pute ¥, =

NN

{xkji}t;—"". Define a pyramid Uy ; = conv{{Z} U
N(Fy,;)}. Then

NFk

int Wy ;0 int Oy, j#5, U= ] Tr;. (40)
j=1

Each zy ;; corresponds to an zp, € N(¥), where
¢ depends on (j,4), and we denote ¢ as £(j,i) and
we represent Ty ¢ as T g(j,i)- Let Tk, 0(5,) correspond
T

T
[%,Z(j,i) Tk(Gi)| €

For convenience, let xj ;0 = % and

to Tk,0(5,0)s that is, i’k,é(j,i) =
N(®y).
Tk,é(j,o) =Tr.

We propose a piecewise linear control law r(x).
N, |
3J

When = € Uy ;, there exists {\; € [0,1]},_, such
that Z Ai=1land x = Z NiTho(ji) > and r(x) is
i=0 i=0
given by
(@)= D MkeGay I 7€ (Wi \To), (g
=0
7, if x e Uy.

Theorem 2 Assume that Vo = P+, { Py, \I/k}’,z":"“f‘
are computed. Then, we have

Vo C U, C...C T, (42)

max *

If xog € Wy, for some ko < kmax and if we apply the
control law (41), then constraints (6) hold and a % set-
tling time kg is achieved. [ |

If Wy, is a simplex, then Ny, Ny,
rank X ; = n, and r(z) in (41) is given
_ —1 5 o

by r(z) = Rg;X, o + 7, where Xj; =
[Thjn =& Thj2— & T jm, — 2] and Ry ; =
[rhja =7 Trj2 =7 Thjme = 7]

5. Concluding Remark

In this paper, we studied the constraint control of
nonlinear servo systems. The contribution of this pa-
per are to derive Theorems 1 and 2 and to propose a
new control law (41), This control law is quite similar
to those in [9], [10], but it is different because we do
not consider decompositions of ¥;\W;_; into union
of simplexes. As a result, our implementation reduces
on-line process time than the previous implementation
in [9], [10].

Because of the lack of spaces, we do not in-
clude proofs of lemmas and theorems. The proofs
can be obtained by requiring them by email to
tes.y.ohta@people.kobe-u.ac.jp .
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