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Abstract– The realization of energy-efficient edge-AI 

hardware is an important issue for utilizing it as a 

fundamental technology for the next-generation IoT society. 

Nonvolatile logic-circuit technology based on MTJ devices 

is a key to solving this challenge. In this paper, we discuss 

design guidelines and prospects for edge-AI hardware that 

enables energy-saving operation by maximizing the use of 

nonvolatile memory functions.  

 

1. Introduction 

With the advancement of Internet-of-Things (IoT) 

sensor node applications, the number of devices connected 

to the Internet is increasing. Applications of IoT devices 

range from improving manufacturing and harvesting 

efficiency to smart homes, and are expected to be used in a 

variety of fields. The big data collected by IoT devices and 

the knowledge obtained from their analysis will open the 

door to a new era of intelligent computing paradigm. 

In the present server-oriented IoT system, the cloud 

server performs overall control and data processing sent 

from the sensor nodes. In this system, however, a vast 

amount of data traffic will become a serious issue in the 

future. As a solution to this issue, the importance of so-

called edge-AI hardware is attracting attention. By 

replacing some of the processing performed by the server 

with AI processing by the sensor node itself, and 

exchanging only the feature values of the sensing data with 

the server, data traffic can be reduced (Fig. 1).  

For the implementation of new IoT systems based on 

edge AI, it is necessary to implement energy-efficient 

hardware that can perform AI processing with the 

extremely low energy consumption allowed by edge 

devices as its platform technology. For this purpose, we 

have been working on a new circuit technology that utilizes 

nonvolatile memory technology, i.e., nonvolatile logic [1-

3]. In this paper, we provide a brief overview of recent 

developments in edge-AI hardware utilizing nonvolatile 

memory based on recent reports, and discuss issues to be 

considered for the realization of energy-efficient edge-AI 

hardware, including the recent works of our research group. 

 

2. Basic Study on Energy-Efficient Edge-AI Hardware 

The most common performance indicator for AI 

hardware is the number of executable operations per watt 

(OPS/W). If the supply voltage to the hardware equals to 1 

V, OPS/W is equal to the reciprocal of the energy required 

for executing one multiply-and-accumulate (MAC) 

operation. This energy includes dynamic energy required 

for the operation and the energy required to transfer the 

corresponding data (inputs and weights), as well as static 

energy consumed at all times and energy required to control 

the computation unit per operation. In other words, OPS/W 

represents the energy efficiency of the edge-AI hardware.  

To increase OPS/W, it is necessary to reduce the energy 

consumption per operation. For example, If the target 

performance is 10 TOPS/W, the energy per operation must 

be less than 1 / (10×1012) = 100 fJ. Considering that the 

energy consumption for 32-bit fixed-point addition in a 45 

nm CMOS process is approximately 100 fJ [4], this is a 

very challenging task. 

Based on the energy breakdown shown above, the 

following approaches can be taken to reduce energy: 

1. Develop energy-efficient MAC operation circuit, 

2. Reduce the amount of data transfer as much as possible, 

3. Reduce static energy, 

4. Simplify control as much as possible. 

Quantization [5], which is widely used in recent edge-AI 

hardware, is positioned as an approach for 1 and 2, while 
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Fig. 1. Edge-AI-based IoT system.  
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computing-in-memory (CIM) architecture [6, 7] is mainly 

aimed at 1, 2, and 4. For approach 3, it is expected to be 

reduced by downsizing the circuit using quantization and 

other methods. In contrast, nonvolatile logic-circuit 

technology, in which nonvolatile memory elements are 

placed near logic circuits, and the active application of 

power gating enabled by this technology are direct 

approaches to reduce static energy. Therefore, the use of 

this technology is expected to achieve further energy 

savings that cannot be achieved with the technologies 

currently used in AI hardware alone. 

 

3. Recent Trend and Future Prospects of AI Hardware 

Utilizing Nonvolatile Devices 

The objectives of utilizing nonvolatile memory in AI 

hardware can be roughly categorized as follows: 

- Implementing CIM structures, 

- Multi / analog value retention, 

- 3D implementation, 

- Nonvolatile memory for weight coefficients. 

Most of the AI accelerator chips presented at ISSCC 

(~2021) that utilize nonvolatile memory are based on 

ReRAM. Considering the nature of the conference, ease of 

implementation may be the main reason for this. Several 

cases of using nonvolatile memory as an analog storage 

device will be presented around 2020. On the other hand, 

at technology-related conferences such as Symposium on 

VLSI Technology and IEDM, there are many presentations 

other than ReRAM. However, most of them are device-

level studies, and there are still not many examples of chip-

level implementations. 

 We are conducting research toward the realization of 

energy-efficient edge-AI hardware using MTJ devices, 

which are attracting attention as next-generation 

nonvolatile memory devices [8, 9]. The advantage of MTJ 

devices is that they can be implemented by distributing 

nonvolatile memory functions close to the logic circuitry. 

This structure makes it possible to apply power gating with 

low overhead without the need to save data to external 

memory, even in applications that require intermediate data 

retention. Therefore, power gating can be applied in a fine-

tuned manner on a per-circuit-module basis [10], and the 

amount of wasted static energy can be reduced as much as 

possible, depending on the operating conditions of the 

circuit as shown in Fig. 2. 

On the other hand, the drawback of MTJ devices is their 

high write energy. Therefore, it is desirable to choose a 

circuit configuration in which data stored in nonvolatile 

memory is rewritten as little as possible. An example of 

Fig. 2. Differences in power consumption trends for 

various nonvolatile LSI implementations: (a) with 

chip-level power gating, (b) with sub-array-level 

power gating.  
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Fig. 3. Design example of a BNN hardware: (a) 

network structure, (b) operation waveforms.  
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such a circuit architecture is one in which all layers are 

placed on a chip and all data required for one process (i.e., 

image data and weight coefficients for an inference process 

of convolutional neural network) are held in an input buffer 

with nonvolatile storage or nonvolatile registers near logic 

blocks. Although scalability issues remain, such a structure 

would be suitable for energy saving because data is 

exchanged with external memory only once, and buffers 

and parts of the logic circuit can be finely power-gated in 

the middle of processing. 

As a design example, Figure 3 shows the configuration 

of the binarized neural network (BNN) hardware presented 

in [11] and its operating waveforms. Since the main focus 

of [11] is to improve the performance of the elemental 

circuits (nonvolatile look-up tables) of the BNN hardware, 

the overall architecture itself was constructed in a straight-

forward manner. From the operation waveforms, it can be 

confirmed that there is room for further performance 

improvement by changing to a configuration that fully 

utilizes the nonvolatile memory function. Specifically, the 

following specifications can serve as a design guideline for 

energy-efficient edge-AI hardware which maximizes the 

advantages of the use of nonvolatile memory functions. 

- Pipelined processing is applied to the computation 

blocks corresponding to each layer of the network. 

- Weight data is not stored in buffers, but in nonvolatile 

registers located near the MAC operation units. 

- Input data is held in a buffer with nonvolatile storage. 

- The hardware configuration of each layer is designed to 

enable energy-saving technologies such as quantization, 

and to reuse data once read as much as possible. 

- The degree of parallelism of operations at each layer is 

adjusted to equalize the processing time per stage as 

much as possible. 

- Nonvolatile memory function is also implemented in the 

pipeline registers to hold the output of MAC operations. 

- When an operation on a layer that is not on the critical 

path is completed, power gating is applied until the 

previous operation is completed.  

- The input buffer is divided into multiple banks, and 

power gating is applied to the banks that hold data not 

subject to processing. 

Further studies will be conducted to realize edge-AI 

hardware, which will be a fundamental technology for the 

next-generation IoT society. 

 

4. Conclusion and Prospects 

This paper discussed design guidelines for edge-AI 

hardware that maximizes nonvolatile memory capability 

and achieves energy-efficient operation, including recent 

trends of edge-AI hardware and how to utilize MTJ devices 

in consideration of their advantages and disadvantages. 

Nonvolatile logic-circuit technology enables flexible 

power gating, which is expected to expand the available 

design space and enable further energy savings and 

performance improvements that are not possible with 

conventional technologies.  

In the future, demand for Edge-AI hardware that is not 

only energy efficient but also robust in the unstable 

operating environment expected in IoT applications is 

expected to increase. In addition to its effectiveness as a 

memory that holds inputs and weights, the 

programmability provided by nonvolatile logic circuit 

technology is also effective in making circuits highly 

reliable, and we have demonstrated the potential of this 

technology [3]. By comprehensively utilizing these 

technologies, high performance, energy-efficient, and 

highly-reliable edge-AI hardware based on nonvolatile 

logic-circuit technology is expected to be established as a 

platform technology for the next-generation IoT society. 
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