
Implementation of implicit Runge-Kutta methods into circuit simulators for
nonlinear circuits

Yasuhiko Tohyama†, Jun Shirataki† and Makiko Okumura†

†Kanagawa Institute of Technology Shimoogino 1030, Atsugi-city, Kanagawa, 243-0292 Japan
Email: {y-tohyama,shira,okumura}@ele.kanagawa-it.ac.jp

Abstract—This paper describes a method of imple-
menting implicit Runge-Kutta(IRK) formulas into circuit
simulators for nonlinear circuits as numerical integration.
Equivalent circuits at discrete time of IRK formulas for lin-
ear and nonlinear elements are proposed. In IRK methods,
the size of equivalent circuit becomes larger than the nu-
merical integration in conventional circuit simulators, be-
cause the equivalent circuit at an intermediate time between
past and present time are needed in addition to the equiva-
lent circuit at present time. This problem is solved by using
larger time step for numerical integration compared to con-
ventional methods to save calculation time, since RadauIIA
and LobattoIIIA of IRK formulas have high orders and are
A-stable. The IRK and conventional methods are compared
in terms of accuracy and computational costs by using an
example circuit.

1. Introduction

In conventional time-domain circuit simulators, multi-
step backward-differential-formulas such as Gear’s meth-
ods and trapezoidal algorithm are used to solve ordi-
nary differential equations [1]-[3]. The order of trape-
zoidal formula is 2nd, and that of typical algorithms in
Gear’s methods are 1st or 2nd at most, since Gear’s meth-
ods over 3rd order are not A-stable. RadauIIA(s=2) and
LobattoIIIA(s=3) of IRK have 3rd order and 4th order,
respectively[4]. They are A-stable and the stability re-
gion of IRK formulas includes the whole left half-complex
plane. General formula for RadauIIA and LobattoIIIA of
IRK formulas were introduced as numerical integration for
circuit simulation in the reference [5]. In this paper, equiva-
lent circuits and equations for the simulation for linear and
nonlinear elements to implement IRK methods into a cir-
cuit simulator for general purposes are proposed. Then,
it is shown that the size of an equivalent circuit becomes
twice as large as circuits using conventional methods, as
the equivalent circuit includes a circuit at a time between
past and present in addition to the present circuit. There-
fore, we compared the IRK and conventional methods in
terms of accuracy and computational costs using an exam-
ple circuit. Fortunately, we can use larger time steps for
numerical integration than the ones used in conventional
methods to save calculation time, since the order of IRK
algorithms is high.

2. General formula for Runge-Kutta methods

For ordinary differential equation

y′ = f (t, y),

Runge-Kutta methods are given by{
Yi = yn + h

∑s
j=1 ai j f

(
tn + c jh, Y j

)
(i = 1, 2, · · · , s)

yn+1 = yn + h
∑s

i=1 bi f (tn + cih,Yi)
(1)

where each coefficient of (1) is given by Butcher arrange-
ment shown in Table 1. In RadauIIA and LobattoIIIA, the
upper triangle elements ai j (i ≤ j) are not zero and then
Runge-Kutta methods are implicit numerical integrations.
Parameters ci denote the intermediate time. RadauIIA(s=2)
and LobattoIIIA(s=3), which are referred to as Radau-s2
and Lobatto-s3, respectively, have one intermediate time,
because c1 =

1
3 , c2 = 1 for Radau-s2 and c1 = 0, c2 =

1
2 ,

c3 = 1 for Lobatto-s3. Assuming that mi j = ai j,m10 =

m20 = 0 in Radau-s2 and mi j = a(i−1)( j−1) in Lobatto-s3, the
two IRK methods can be written as follows [5]:{

Y(ta) − y(tn) − hm10 f (tn) − hm11 f (ta) − hm12 f (tn+1) = 0
y(tn+1) − y(tn) − hm20 f (tn) − hm21 f (ta) − hm22 f (tn+1) = 0

(2)

where tn, ta and tn+1 indicate a past time, an intermediate
time and a present time.

Table 1: Butcher arrangement

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...
. . .

...
cs as1 as2 . . . ass

b1 b2 . . . bs

3. Equivalent circuit for a linear element

3.1. Linear capacitor

Applying (2) to ordinary differential equation v
′
c(t) =

i(t)/C for a linear capacitor, we can get equation (3). Then,
the equivalent circuit is shown in Fig. 1 and the equation
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for the simulation is given by
B −B A −A
−B B −A A
E −E D −D
−E E −D D




v1,n+1
v2,n+1
v1,a
v2,a

 =

−P
P
−F
F

 (4)

where v1,a and v2,a are the voltages at an intermediate time
ta while v1,n+1 and v2,n+1 are the voltages at a present time
tn+1.

−

+ +

−

+

−
F

D
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Bvc

v1

v2

vca

v1,a

v2,a

vcn+1

v1,n+1

v2,n+1

E

Avca

vcn+1

Figure 1: Equivalent circuit of linear capacitor for Radau-
s2 and Lobatto-s3

Parameters A and E denote the coefficients of voltage con-
trolled current source(VCCS). The VCCS with coefficient
A is controlled by vca and E is controlled by vcn+1. They
are calculated by

A =
−m21

h
C (m11m22 − m12m21)

, E =
−m12

h
C (m11m22 − m12m21)

.

Parameters B and D show admittances that are coefficients
of the voltage at each moment. They are calculated by

B =
m11

h
C (m11m22 − m12m21)

, D =
m22

h
C (m11m22 − m12m21)

.

Parameters P and F are independent current sources that
can be computed from the past voltage and current values.

P =
(−m11 + m21)vcn +

h
C (m10m21 − m11m20)icn

h
C (m11m22 − m12m21)

F =
(m12 − m22)vcn − h

C (m10m22 − m12m20)icn

h
C (m11m22 − m12m21)

------------------------------------------------------------------------------------------------------

ia =
(m12 − m22)vn + m22va − m12vn+1 −

h
C

(m10m22 − m12m20)in

h
C

(m11m22 − m12m21)

in+1 =

(−m11 + m21)vn − m21va + m11vn+1 +
h
C

(m10m21 − m11m20)in

h
C

(m11m22 − m12m21)

(3)



i(k+1)
ca = m22

hα

{
q(v(k)

a ) +C(k)
a

(
v(k+1)

a − v(k)
a

)}
− m12

hα

{
q(v(k)

n+1) +C(k)
n+1(v(k+1)

n+1 − v(k)
n+1)

}
+ 1

hα {(m12 − m22)q(vn) − h(m10m22 − m12m20)Cn)}

i(k+1)
cn+1 =

m11
hα

{
q(v(k)

n+1) +C(k)
n+1(v(k+1)

n+1 − v(k)
n+1)

}
− m21

hα

{
q(v(k)

a ) +C(k)
a

(
v(k+1)

a − v(k)
a

)}
+ 1

hα
{
(m21 − m11)q(v(n)) + h(m10m21 − m11m20)Cn)

}
(6)

4. Equivalent circuit for diode

4.1. Diode model

A model of a diode is shown in Fig. 2. It consists of a
contact resistance Rs, a nonlinear conductance g(v) and a
nonlinear capacitor q(v). g(v) and q(v) are connected paral-
lelly.

+

−

+

−

g(v) q(v)

Rs

v

ig ic

Figure 2: Diode model

4.2. Linearization and numerical integration for non-
linear capacitor

We assume that the relationship of the current ic and the
diode voltage v are given by

ic =
dq(v)

dt
(5)

q(v) = TtIs

(
exp

(
v

NVt

)
− 1

)
where Tt, Is and N each shows a run time, a saturation cur-
rent and an emission coefficient. Applying (2) to ordinary
differential equation (5) and linearizing by Newton method,
we reach equation (6), where (k) represents the number of
Newton iteration. C(k)

a , C(k)
n+1, Cn and α in (6) are given by

C(k)
a =

∂q(v)
∂v

∣∣∣∣∣
v=v(k)

a

C(k)
n+1 =

∂q(v)
∂v

∣∣∣∣∣
v=v(k)

n+1

Cn =
∂q(v)
∂v

∣∣∣∣∣
v=vn

α = (m11m22 − m12m21).

Equation (6) is rewritten by followings:
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{
i(k+1)
ca = G(k)

ca v(k+1)
a + g(k)

cn+1v(k+1)
n+1 + I(k)

ca

i(k+1)
cn+1 = G(k)

cn+1v(k+1)
n+1 + g(k)

ca v(k+1)
a + I(k)

cn+1
(7)

where G(k)
ca and G(k)

cn+1 are conductances and decided by

G(k)
ca =

m22

hα
C(k)

a G(k)
cn+1 =

m11

hα
C(k)

n+1.

g(k)
cn+1 and g(k)

ca in (7) show the coefficients of VCCS. The
VCCS with coefficient g(k)

cn+1 is connected to the equivalent
circuit at ta and controlled by voltage at tn+1. g(k)

ca is con-
nected to the equivalent circuit at tn+1 and controlled by
voltage at ta. They are determined by

g(k)
cn+1 = −

m12

hα
C(k)

n+1 g(k)
ca = −

m21

hα
C(k)

a .

Ik
ca and Ik

cn+1 in (7) are given by

I(k)
ca = I(k)

c1 + i(k)
c1 + Ic1n

I(k)
cn+1 = I(k)

c2 + i(k)
c2 + Ic2n

where each term is calculated by

I(k)
c1 = m22/(hα)

{
q(v(k)

a ) + TtIs −C(k)
a v(k)

a

}
I(k)
c2 = m11/(hα)

{
q(v(k)

n+1) + TtIs −C(k)
n+1v(k)

n+1

}
i(k)
c1 = m12/(hα)

{
C(k)

n+1v(k)
n+1 − q(v(k)

n+1) − TtIs

}
i(k)
c2 = m21/(hα)

{
C(k)

a v(k)
a − q(v(k)

a ) − TtIs

}
Ic1n = TtIs(m12 − m22)/hα
+

Tt Is
hα

[{(m12 − m22) − h(m10m22 − m12m20)} q(vn) + TtIs − 1
]

Ic2n = TtIs(m21 − m11)/hα
+

Tt Is
hα

[{(m21 − m11) + h(m10m21 − m11m20)} q(vn) + TtIs − 1
]
.

4.3. Linearization for nonlinear conductance

Nonlinear conductance is linearized by applying New-
ton method at both ta and tn+1, as Radau-s2 and Lobatto-s3
have one intermediate point. Then, the equivalent circuit
for nonlinear conductance consists of conductances G(k)

ga

and G(k)
gn+1 and independent current sources I(k)

ga and I(k)
gn+1

which are parallel with each other, where

G(k)
ga =

∂g(v)
∂v

∣∣∣∣∣
v=v(k)

a

G(k)
gn+1 =

∂g(v)
∂v

∣∣∣∣∣
v=v(k)

n+1

I(k)
ga = g(v(k)

a ) −G(k)
ga v(k)

a I(k)
gn+1 = g(v(k)

n+1) −G(k)
gn+1v(k)

n+1.

------------------------------------------------------------------------------------------------------

Gs −Gs

−Gs Gs +G(k)
d2 −G(k)

d2 g(k)
ca −g(k)

ca

−G(k)
d2 G(k)

d2 −g(k)
ca g(k)

ca
Gs −Gs

g(k)
cn+1 −g(k)

cn+1 −Gs Gs +G(k)
d1 −G(k)

d1
−g(k)

cn+1 g(k)
cn+1 −G(k)

d1 G(k)
d1





v1,n+1
v2,n+1
v3,n+1
v1,a
v2,a
v3,a


=


−I(k)

d2
I(k)
d2

−I(k)
d1

I(k)
d1


(8)

4.4. Equivalent circuit for diode

An equivalent circuit at (k+1) Newton iteration and
(n+1) discrete time for a diode is shown in Fig. 3, where

G(k)
d1 = G(k)

ga +G(k)
ca G(k)

d2 = G(k)
gn+1 +G(k)

cn+1

I(k)
d1 = I(k)

ga + I(k)
ca I(k)

d2 = I(k)
gn+1 + I(k)

cn+1.

Then, the equation for the simulation is given by equation
(8).

+

−

+

−

Gd1
(k)(k+1)

Id1

va

Gs

(k) vn+1
(k+1)

gcn+1
(k)

vn+1
(k+1)

Gd2
(k)

Id2
(k) gca

(k)
va
(k+1)

Gs

v1

v2

v3

a n+1

n+1

n+1

a

a

v1

v2

v3

Figure 3: Equivalent circuit for diode

5. Comparison of the error with the conventional
method

The estimated error of the trapezoidal, Radau-s2 and
Lobatto-s3 for an RC circuit shown in Fig. 4, ε is calcu-
lated by

ε =

∣∣∣∣∣vc − v
vc

∣∣∣∣∣ × 100[%]

where vc is an exact solution at t = 1[s] calculated from

vc(t) = E
(
1 − exp

t
RC

)
and v is a numerical solution of each numerical integra-
tion method. An exact solution is used as the past value
to calculate the present numerical solution. The results are
shown in Fig. 5, where horizontal axis shows the time step
and vertical axis shows the error. According to the graph,
larger time steps can be used in IRK methods in order to
obtain the same accuracy as the trapezoidal rule. For ex-
ample, Radau-s2 can use 6 times the numerical integration
time step as large as the trapezoidal rule and Lobatto-s3
can use 77 times as large time step as the trapezoidal with
1.0 × 10−4[%] error.
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Figure 4: RC circuit
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Figure 5: Error of each numerical integration

6. Comparison of computational costs

The waveform of simulation results using IRK methods
for the diode circuit in Fig. 6 are shown in Fig. 7. We
compare the computational costs between IRK methods
and the trapezoidal method. Figure 8 shows the calcula-
tion time of two methods, where the horizontal axis is the
time step of numerical integration and vertical axis is cal-
culation time for three thousand periods. The straight line
shows Lobatto-s3 and the dotted line shows the trapezoidal
method. According to the graph, the computational costs of
two methods become the same if Lobatto-s3 uses about 3.9
times the step size as the trapezoidal method. We can get
much higher accuracy than the trapezoidal method, even if
we use 3.9 times the step size as large as the trapezoidal, or
more since Lobatto-s3 is the 4th order numerical integra-
tion.

7. Conclusion

This paper described the technique for implementing
Radau-s2 and Lobatto-s3 of IRK formulas, which are A-
stable and have high orders, as numerical integration into
circuit simulators. Equivalent circuits at discrete time for
capacitors and diodes were proposed. The equivalent cir-
cuit at one intermediate time was needed and the circuit
size became twice as large as the trapezoidal method in
Radau-s2 and Lobatto-s3. This problem was solved by us-
ing larger time step for the numerical integration, since the
order of the numerical integration was high.

f=1k
1kΩ

sin(2πft)

Output voltage

Figure 6: Diode circuit
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