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Abstract—Dynamics and synchronization in semicon-
ductor lasers subject to constant-amplitude and random
phase light are numerically and analytically investigated.
We particularly focus on frequency response of optical
intensity to phase modulation for injected light. Lang-
Kobayashi equations are used for our numerical simulation.
Frequency spectra of time-series for optical intensity can
be obtained from the numerical simulation, and our results
are consistent with experimental ones shown in [1]. We
also explain the frequency response by using linear stabil-
ity analysis.

1. Introduction

It has been known that a common random input could
give rise to synchronization between two uncoupled non-
linear dynamical systems [2]. This phenomenon is known
as common random-signal induced synchronization. Semi-
conductor lasers are one of nonlinear dynamical systems
which show such synchronization phenomenon [3].

Recently, a secure key distribution scheme using syn-
chronization of semiconductor lasers has been proposed
[4]. This scheme is implemented by using common sig-
nal induced synchronization in semiconductor lasers with
constant-amplitude and random-phase (CARP) light [3]. A
model of common signal induced synchronization using
CARP light is shown in Fig. 1. The model consists of three
semiconductor lasers. One laser is called drive, and other
two lasers are called response 1 and response 2. The optical
output of the drive laser has a constant amplitude. CARP
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Figure 1: Model for common random signal induced syn-
chronization in semiconductor lasers with CARP light.

light is generated by modulating electric phase of the opti-
cal output from the drive laser by using a noise signal. The
CARP light is injected into the two response lasers. Optical
intensity produced by the response lasers intricately fluctu-
ates, but their temporal waveforms can be synchronized.

For secure key distribution, it is required that measur-
ing the optical phase of the CARP light is difficult. En-
hancing the frequency bandwidth of the phase-modulation
signal for the CARP light can be one of methods for mak-
ing it difficult to measure the optical phase. Recently, de-
pendence of both the synchronization and the dynamics
of the response lasers on the frequency bandwidth of the
phase-modulation signal has been experimentally investi-
gated [1]. However, the mechanism of the dependence has
not been cleared. In this study, we numerically confirm the
dependence of both the synchronization and the dynamics
of the response laser on the frequency bandwidth of the
phase-modulation signal for CARP light. We also explain
the mechanism of the dependence by linearizing a numeri-
cal model for the response laser.

2. Numerical model

The temporal dynamics of the two response lasers shown
in Fig. 1 is governed by the Lang-Kobayashi equations as
shown in the following [5]:

dE1,2(t)
dt

=
1 + iα

2

[
GN(N1,2(t) − N0) − 1

τp

]
E1,2(t)

+ κin jEin j(t) exp[i(∆ωt − ωdτin j)] + ξ1,2(t), (1)

dN1,2(t)
dt

= Jr −
N1,2(t)
τs

−GN(N1,2(t) − N0)|E1,2(t)|2, (2)

where E is the slowly varying complex electric amplitude
and N is the carrier density. The subscripts 1 and 2 rep-
resents the response 1 and 2, respectively. Common pa-
rameters for the two response lasers have the subscript r.
GN is the gain coefficient, N0 is the carrier density at trans-
parency, α is the linewidth enhancement factor, τp is the
photon lifetime, τs is the carrier lifetime, and J is the injec-
tion current. The injection current is given as J = 1.5Jth,
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where Jth is that at the lasing threshold. Other parameter
values are set to the same as in [6]

Optical injection to the response lasers is represented by
the second term in the right hand side of Eq. (1). κin j is the
injection strength and ∆ω is the optical angular frequency
detuning between the drive and the response. ∆ω is given
as ∆ω = ωd −ωr, where ω is the optical angular frequency.
ωdτin j represents the phase shift due to the propagation of
light from the drive. τin j is the propagation time, but τin j =

0 is used for simplicity. Unless otherwise noted, κin j = 31.1
ns−1 and ∆ f = −4.0 GHz are used. Injection locking is
achieved by using these parameter values.

Ein j(t) for optical injection represents the CARP light
and is given by the following equations,

Ein j(t) = Ad exp[iηlp f (t)], (3)

where Ad is the electric amplitude of the drive laser
and is temporally constant. ηlp f (t) represents the phase-
modulation signal for the CARP light. ηlp f (t) is generated
by passing a colored noise η(t) through a lowpass filter with
a cutoff frequency fc. The colored noise η(t) is generated
by the Ornstein-Uhlenbeck process shown in the following
differential equation,

dη(t)
dt
= −η(t)
τm
+

√
2
τm
ξm(t), (4)

where τm = 0.02 ns is a positive constant. ξm(t) is the nor-
malized white Gaussian noise with the properties ⟨ξm(t)⟩ =
0 and ⟨ξm(t)ξm(s)⟩ = δ(t − s), where ⟨·⟩ denotes the ensem-
ble average and δ is the Dirac’s delta function. η(t) has the
properties ⟨η(t)⟩ = 0 and ⟨η(t)η(s)⟩ = exp[−|t − s|/τm]. The
characteristic time of η(t) is defined by τm.

In this study, the lowpass filter is realized by using a dig-
ital filter. We use a finite impulse response filter with han-
ning window as the digital filter.

The third term ξ1,2(t) in the right hand side of Eq. (1) rep-
resents spontaneous emission. ξ1,2(t) is complex number,
and degenerates synchronization accuracy in our model.

3. Derivation of amplitude response to CARP light in
semiconductor lasers

We derive the frequency response of the electric ampli-
tude to the phase modulation for the CARP light by lin-
earizing the Lang-Kobayashi equations. The two response
lasers are synchronized by a common input signal. Since
the synchronization is achieved by injection locking, we
consider steady state solutions for an injection locked laser.

Firstly, we assume that the optical phase of the common
input signal is not modulated, which gives Ein j(t) = Ad in
Eq. (1). We consider the steady state solutions for E(t) and
N(t) as E(t) = As exp[i(∆ωt + ϕs)], where ∆ωt comes from
injection locking, and N(t) = Ns. Inserting the solutions
and Ein j(t) = Ad into Eqs. (1) and (2) gives us the following

solutions,

|As|2 =
jNth − Ns

τsGN(Ns − N0)
, (5)

ϕs = sin−1

 −∆ω
κin j
√

1 + α2

 − tan−1 α, (6)

Ns = Nth −
2κin j cos ϕs

GN
, (7)

where we used Ad = As for the injected field to simplify
our analysis.

Next, we consider small perturbations written in the
form x(t) = xs + δx(t) (x = A, ϕ, and N) in order to investi-
gate the stability of the injected laser. We assume the signal
term that also takes the form Ein j(t) = Ad exp[i(δϕdrv(t))].
Inserting these variables into Eqs. (1) and (2) leads to the
following set of linearized equations:

dδA(t)
dt

= a1δA(t) + a2δϕ(t) + a3δN(t) + a2δϕdrv(t), (8)

dδϕ(t)
dt

= a4δA(t) + a1δϕ(t) + a5δN(t) + a1δϕdrv(t), (9)

dδN(t)
dt

= a6δA(t) + a7δN(t), (10)

where

a1 = −κin j cos[ϕs], a2 = −κin jAs sin[ϕs], a3 =
GN As

2
,

a4 =
κin j

As
sin[ϕs], a5 =

αGN

2
,

a6 = −2GN As(Ns − N0), a7 = −
1
τs
−GN A2

s .

(11)

Since we are interested in the frequency response, we re-
place the small perturbation δx(t) into δxc exp[iωint], where
x is A, ϕ, N, or ϕdrv. In the transform, ωin is the angular fre-
quency of the perturbation. Inserting δx(t) = δxc exp[iωth]t
into Eqs. (8)–(10), the frequency response of the electric
amplitude to the phase modulation for the CARP light is
represented as shown in the following equation:

δAc

δϕdrv,c
=

(iωin − a7)a2iωin

D(ωin)
, (12)

where

D(ωin) = (iωin − a1)(iωin − a1)(iωin − a7) − a2a5a6

− (iωin − a1)a3a6 − (iωin − a7)a2a4. (13)

Eq. (12) is complex number and we calculate its absolute
value.

4. Numerical results

We show examples of signals used for modulating the
optical phase of input signals injected into the response
laser. Figure 2 shows temporal waveforms and frequency
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Figure 2: Examples of the phase-modulation signal passed
through the lowpass filter with different cutoff frequency fc.
(a) is the temporal waveforms. (b) is the frequency spectra,
but the black curve is not filtered. The cutoff frequencies
fc = 2.0, 5.0, and 8.0 GHz are used.
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Figure 3: Temporal waveforms of the response lasers and
their correlation plots. The cutoff frequency fc for the
CARP light is 8.0 GHz for (a) and (b). fc = 2.0 GHz is
used for (c) and (d)..

spectra of the signals for the modulation. In the upper and
lower panel of Fig. 2(a), the lowpass filter with fc = 8.0
and 2.0 GHz is used, respectively. The amplitude of the
phase-modulation signal is normalized so that the standard
deviation of the amplitude is 0.2. Fig. 2(b) shows the fre-
quency spectra corresponding to the temporal waveforms.
We can see that power is reduced in larger frequency than
fc.

By injecting CARP light into the two response lasers,
synchronization between them is achieved. Figure 3 shows
temporal waveforms of the response 1 and 2 and their cor-
relation plot. For Figs. 3(a) and 3(b), the cutoff frequency
fc = 8.0 GHz is used for generating the phase-modulation
signal. The two temporal waveforms are strongly corre-
lated as shown in Fig. 3(a) and (b), and synchronization is
achieved. On the other hand, Figs. 3(c) and 3(d) are for
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Figure 4: Dependence of the cross-correlation value C and
the standard deviation of the temporal output of the re-
sponse 1 laser on the cutoff frequency fc.

fc = 2.0 GHz. We find that the temporal waveforms are
weakly correlated and the their amplitude is smaller than
those of Fig. 3(a).

We introduce a cross-correlation value to evaluate syn-
chronization accuracy.

C =

⟨
(I1(t) − Ī1)(I2(t) − Ī2)

⟩
σ1σ2

(14)

In this equation, I(t) is the optical intensity, Ī is the mean
value of I(t), σ is the standard deviation of I(t), and ⟨·⟩
indicates time averaging.

The black curve in Figure 4 depicts the dependence of
the cross correlation value C on fc. High values of C (al-
most one) is obtained for fc > 6 GHz. However, C is rel-
atively low for small fc. The reason for low values of C is
the small amplitudes of the temporal waveforms of the re-
sponse lasers. The blue curve in Fig. 4 represents the stan-
dard deviation of the temporal waveform of the response
1 laser versus fc. The standard deviation is small for small
fc. When the standard deviation is small, noise effect due to
spontaneous emission becomes relatively large. The noise
effect degenerates synchronization accuracy.

Next, we investigate the frequency response of the semi-
conductor laser with the CARP light. Figure 5(a) shows
the frequency response calculated by using Eq. (12). We
find that the spectrum has a resonance peak at 5.8 GHz.
This peak corresponds to a damping oscillation mode for
injection locked semiconductor lasers [7]. We compare the
analytical result with numerically obtained frequency spec-
tra. Fig. 5(b) shows the frequency spectrum of the response
laser when the phase-modulation signal is not filtered. The
spectrum has a resonance peak at 5.6 GHz, which corre-
sponds to the peak at 5.8 GHz for Fig. 5(a), and the shape
of the spectrum is similar to Fig. 5(a).

Figures 5(c) and 5(d) show the frequency spectra at
fc = 8.0 GHz and 2.0 GHz. We find that the power drop
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Figure 5: (a) is the frequency response calculated from Eq.
(12). (b)–(d) are numerically obtained frequency spectra
of the response 1 laser. The phase-modulation signal is
not filtered for (b). The frequency bandwidth of the phase-
modulation signal for (c) and (d) are limited by using the
lowpass filter with fc = 8.0 GHz and 2.0 GHz, respectively.

at the frequency corresponding to fc. The response laser
has the frequency response under fc in Fig. 5(a) since the
phase-modulation signal has oscillation with the lower fre-
quencies than fc. The frequency spectra for lower frequen-
cies than fc have similar shape to Fig. 5(a). This means
that the response laser has frequency spectra that are ob-
tained by passing a noise signal with flat frequency spec-
trum through the transform of Fig. 5(a). However, the peak
at 5.6 GHz is still observed even for fc = 2.0 GHz. This
peak comes from relaxation oscillation frequency for injec-
tion locked semiconductor lasers.

The reason for low values of the standard deviation for
small fc in Fig. 4 is because of low frequency response for
small frequency in Fig. 5(a). When fc is small, the fre-
quency response for lower frequency than fc is obtained as
shown in Fig. 5(d). The magnitude of the power at the
lower frequencies of Fig. 5(d) is comparable to the peak
at 5.6 GHz. The peak comes from the relaxation oscilla-
tion produced by spontaneous emission noise. Since the
power for both the noise and the lower frequencies has sim-
ilar magnitude, the noise is relatively large. Therefore, the
cross correlation value decays.

Finally, we investigate the dependence of the frequency
response on the injection strength κin j. Figures 6(a) and (b)
show the analytical and numerical result for the frequency
response when the phase-modulation signal is not filtered,
respectively. κin j = 31.1 ns−1, 46.6 ns−1, and 62.1 ns−1 are
used in Fig. 6. The resonance peak becomes suppressed
and the spectrum structure becomes almost flat when the
injection strength is increased. We consider that the reso-
nance suppression is due to enhanced damping of the linear
mode [7]. The similar tendency is observed for the numer-
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Figure 6: (a) is the frequency response calculated from Eq.
(12). (b) is the numerically obtained frequency spectra of
the temporal output of the response 1 laser. The injection
strength κin j = 31.1 ns−1, 46.6 ns−1, and 62.1 ns−1 are used
in these figures.

ical result shown in Fig. 6(b).

5. Conclusion

We numerically investigate the dependence of the syn-
chronization of the response lasers on the frequency band-
width of the phase-modulation signal for CARP light. We
found that high correlation values are observed when the
phase-modulation signal has large frequency bandwidths.
However, narrow bandwidth of the phase-modulation sig-
nal degenerates the cross correlation value.

We also show the dependence of the frequency spectra of
the response laser on the frequency bandwidth and analyt-
ically investigate the dependence by a linear stability anal-
ysis. The stability analysis gives us the frequency response
of the electric amplitude of the response laser to the phase
modulation for the CARP light. The frequency response
has a resonance peak which becomes suppressed when the
injection strength is increased. The calculated frequency
spectra of the response laser correspond to the analytical
frequency response.
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