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Abstract—This paper introduces a novel application of
sheaf cohomology to network coding problems. After recall-
ing the definition of sheaves, we introduce NETWORK CODING
SHEAVES for a general multi-source network coding scenario,
and consider various forms of sheaf cohomologies. The main
theorem states that 0-th network coding sheaf cohomology is
equivalent to information flows for the network coding. This
theorem is then applied to several practical problems in net-
work codings such as maxflow bounds, global extendability,
network robustness, and data merging; these applications all
follow from exact sequences of sheaf cohomology.

I. INTRODUCTION

This paper introduces new tools for the analysis of
data flows over networks. We focus on (linear) network
coding [1], an important class of problems with numer-
ous applications to error correction, optimal throughput,
network security, and distribution [2]. Network coding
is one of a host of problems in data analysis and man-
agement that require an understanding of local-to-global
transitions. The novel tools we present in this paper are
based on sheaf theory [3], [5]. This paper introduces the
following principal ideas:

1) SHEAVES are an excellent tool for organizing net-
work information flows;

2) SHEAF COHOMOLOGY yields global characteriza-
tions of networks with coding;

3) EXACT SEQUENCES allow for easy manipulation
and computation of the above.

For more details of this paper including all proofs, we
refer to [4].

II. SHEAF FORMULATION OF NETWORK CODINGS

A. Definition of Sheaves

The reader may consult [3][5] for general discussions
on sheaf theory. Let X be a topological space (e.g.,
network, as a 1-d cell complex) and R be a commutative
ring.

Definition 1 (Presheaf). A PRESHEAF F on X consists of
the following data:

1) an R-module F(U) for each open subset U ⊂ X;
2) an R-linear map ρVU : F(U) → F(V) for each pair
V ⊂ U ⊂ X.

These data satisfy the following conditions:

ρUU = IDU, ρWV ◦ ρVU = ρWU for W ⊂ V ⊂ U,

where IDU is the identity map on F(U).

An element σ ∈ F(U) is called a SECTION of F on U,
and an R-linear map ρVU is called a RESTRICTION map.
We often write σ|V instead of ρVU(σ), and call it the
restriction of σ to V.

Definition 2 (Sheaf). A presheaf F on X is called a SHEAF
if it satisfies the following two conditions:

1) For any open set U ⊂ X, any open covering U =
∪i∈IUi, and any section σ ∈ F(U), σ|Ui

= 0 for all
i ∈ I implies σ = 0.

2) For any open set U ⊂ X, any open covering U =
∪i∈IUi, any family σi ∈ F(Ui) satisfying σi|Ui∩Uj

=
σj|Ui∩Uj

for all pairs (i, j), there exists σ ∈ F(U)
such that σ|Ui

= σi for all i ∈ I.

Each R-module F(U) is best regarded as “local data”
on U. From the conditions in Definition 2, a sheaf F
allows one to glue a set of local data together into global
data uniquely. This hints at its utility.

B. Network Coding Sheaves

We recall the problem setting of network coding
[1][7][8]. Let k be an R-module, or simply a (finite) field.
Let G = (V,E) be a directed graph (not necessarily
acyclic), where V and E are finite sets of nodes and
directed edges, respectively. A directed edge e ∈ E from
v ∈ V to w ∈ V is denoted by e = |vw| (HEAD(e) := w,
TAIL(e) := v). All graphs in this paper are viewed
as topological spaces with the usual locally Euclidean
cellular topology.

We assume that there exists a subset S = {s1, · · · , sα} ⊂
V of nodes called SOURCES which transmit, as informa-
tion, elements in knsi , nsi

∈ N, for each si ∈ S. We also
assume that there exists a subset R = {r1, · · · , rβ} ⊂ V

of nodes called RECEIVERS. Each receiver requires in-
formation from some sources and this assignment is
determined by S : R → 2S in the sense that a receiver
ri requires all transmitted information from S(ri) ∈ 2S.

Let cap : E → N be a CAPACITY function which assigns
for each edge e ∈ E its information capacity cap(e). The
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set of the incoming (outgoing, resp.) edges in the sense
of edge directions at a node v ∈ V is denoted by In(v)
(Out(v), resp.). A LOCAL CODING MAP φwv determines
a data assignment of the incoming data at v into an
outgoing edge e with HEAD(e) = w given by a linear
map

φwv : knv ⊕ klv → kcap(e), where lv =
∑

e∈In(v)

cap(e),

where it is assumed that nv = 0 for v ∈ V\S. In particular,
a local coding map φsirj

from a receiver rj to a source
si ∈ S(rj) corresponds to the DECODING MAP. The local
coding map at v is the linear transformation Φv sending
incoming data to outgoing data; its row decomposition
is precisely the φwv above. Denote the set of all local
coding maps by Φ = {φwv}.

In order to express decodable information flows on a
network as a (co)cycle, we complete the graph G = (V,E)
to X = (V, Ẽ), where Ẽ is given by adding edges e = |rjsi|

in E from each receiver rj to all of its requesting sources
si ∈ S(rj) with cap(e = |rjsi|) = nsi

. To remove ambigu-
ity, we denote the set of incoming edges at v ∈ V in E or
Ẽ by In(v; E) or In(v; Ẽ), respectively, with Out(v;E) and
Out(v; Ẽ) similarly defined. This extension enables one to
compare decoded information at each receiver rj with
transmitted information from si ∈ S(rj) as the gluing
condition of the network coding sheaf on the added edge
e = |rjsi|.

We define the network coding (NC) sheaf F associated
to (X,Φ) locally, as follows:

Definition 3 (Local Sections). 1) For a connected
open set U contained in an edge e ∈ Ẽ,
F(U) := kcap(e).

2) For a connected open set U which only contains
one node v ∈ V, F(U) := knv ⊕ klv , where lv =∑

e∈In(v;E) cap(e).

Definition 4 (Local Restriction Maps). 1) For
connected open sets V ⊂ U ⊂ e for some
edge e, ρVU := ID : F(U) → F(V).

2) For connected open sets V ⊂ U, where U contains
only one node v and V is located in e ∈ In(v; Ẽ),
ρVU : F(U) → F(V) is given by the projection map
induced by the product structure in Definition 3.

3) For connected open sets W ⊂ U, where U contains
only one node v and W is located in e ∈ Out(v; Ẽ),
ρWU := φwv : F(U) → F(W), where w = HEAD(e).

From these local definitions of sections and restric-
tion maps, the network coding sheaf is defined by the
SHEAFIFICATION [5], a standard process to construct
sections and restriction maps via the gluing condition
in Definition 2, specifically:

Definition 5 (NC Sheaf). ForU ⊂ X, F(U) is defined to be
the set of all equivalent classes σ = [(σi, Ui)i∈I], where
a representative (σi, Ui)I with a covering U = ∪IUi

is given by a family of sections σi ∈ F(Ui) satisfying
σi|Ui∩Uj

= σj|Ui∩Uj
, and the equivalent relation ∼ is

defined by

(σi, Ui)I ∼ (τj, Vj)J ⇔ σi|Ui∩Vj
= τj|Ui∩Vj

for i ∈ I, j ∈ J.

The restriction map ρVU : F(U) → F(V) is induced by
local restriction maps on a representative (independent
of the choice of a representative). The sheaf F obtained
by the sheafification process is called the network coding
sheaf of (X,Φ).

C. Sheaf Cohomology

Cohomology is a basic invariant of topological spaces
which captures global features of the space by means of
homological algebra. In like manner, for a sheaf F taking
values in R-modules, the global structure of the sheaf
data on X is characterized by its SHEAF COHOMOLOGY,
H•(X; F), a graded R-module. General sheaf cohomology
is too involved to describe in this short article [5]; we
resort to a more limited (and, fortunately, equivalent and
computable) variant, Čech cohomology.

To define Čech cohomology of F, choose the open
covering X = (∪v∈VUv) ∪

(
∪e∈ẼUe

)
by using open stars

Uv and Ue for each v ∈ V and e ∈ Ẽ. Here, an open star
Uv for a node v ∈ V is the maximal connected open set
containing only one node v, and an open star Ue for an
edge e ∈ Ẽ is the maximal open set contained in the edge
e. Define the Čech complex 0→ C0(X; F)

∂→ C1(X; F) → 0

as:

C0(X; F) =
∏
v∈V

F(Uv) ; C1(X; F) =
∏
e∈Ẽ

F(Ue), (II.1)

where the boundary map ∂ = (∂e)e∈Ẽ is defined for each
product element F(Ue) of C1(X; F) with e = |vw| by

∂e : F(Uv) × F(Uw) → F(Ue),

∂e(σv, σw) = ρUeUv
(σv) − ρUeUw

(σw). (II.2)

Definition 6 (Sheaf Cohomology). The i-th sheaf coho-
mologyHi(X; F) is defined byHi(X; F) := Hi(C•), i = 0, 1.

For an open set A
ι

↪→ X, a sheaf F on X induces a
sheaf on A called the INVERSE IMAGE ι∗F. It is defined
by ι∗F(U) := F(U) for an open set U ⊂ A, and the
restriction maps are induced by the original ones of the
sheaf F. Then, by constructing an open covering for A
from X = (∪v∈VUv)∪

(
∪e∈ẼUe

)
, one can define the sheaf

cohomology H•(A; ι∗F) on A as the cohomology of the
Čech complex C•(A; ι∗F). We will often use the notations
H•(A; F) = H•(A; ι∗F) and C•(A; F) = C•(A; ι∗F).

The relative sheaf cohomology H•(X,A; F) with respect
to A ⊂ X open is defined as follows. Any A open
defines a surjective chain map p• : C•(X; F) → C•(A; F).
The relative chain complex is defined as the subcomplex
C•(X,A; F) := ker(p•). The relative sheaf cohomology is
defined as H•(X,A; F) := H•(C•(X,A; F)).
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D. Computation

It should be noted that computations for NC sheaf
cohomology require only module operations, thanks to
the use of Čech cohomology. In particular, from the
definition of the sheaf cohomology, it suffices to check
the kernel and the cokernel of the boundary map ∂ :
C0(X; F) → C1(X; F). These calculations are performed by
means of Smith normal forms. We refer to [6] for details
of computations of Smith normal forms including fast
algorithms and reduction pre-processing.

E. Information-Theoretic Content of H•

The cohomologies of NC sheaves provide a con-
cise global collation of algebraic, topological, and
information-theoretic content. We begin with an inter-
pretation of H0(X; F) for a NC sheaf F. To this aim,
it suffices to examine the kernel of the boundary map
∂ : C0(X; F) → C1(X; F).

We recall the definition of an information flow on a
network G with coding Φ. An INFORMATION FLOW ψ

for a family of transmitted data z = (zs1
, · · · , zsα

), zsi
∈

knsi , si ∈ S, is defined by an assignment ψ(e) ∈ kcap(e)

for each edge e ∈ E satisfying the FLOW CONDITIONS:
the data in ψ are related by local coding maps Φv at
all vertices v. More specifically, for e = |vw| and ei ∈
In(v; E) (i = 1, · · · , K),

1) φwv(ψ(ei)
K
1 ) = ψ(e) for v /∈ S ∪ R,

2) φwv(zsk
, ψ(ei)

K
1 ) = ψ(e) for v = sk ∈ S,

3) φwv(ψ(ei)
K
1 ) = zsk

for v = rj ∈ R , w = sk ∈ S(rj),
4) φwv(ψ(ei)

K
1 ) = ψ(e) for v = rj ∈ R , w /∈ S(rj),

and so on. The other cases are similarly derived by
taking proper domain and target spaces of local coding
maps.

We recall that the boundary map ∂ : C0(X; F) →
C1(X; F) is determined by a family of maps ∂e (e ∈ Ẽ)
by (II.2). Hence, σ = (σv)v∈V ∈ C0(X; F) ∈ ker(∂) if and
only if ∂e(σv, σw) = 0 for all e = |vw| ∈ Ẽ. The restriction
map ρUeUv

from the tail node v = TAIL(e) is determined
by the local coding map φwv, and the restriction map
ρUeUw

from the head node w = HEAD(e) is determined
by the projection F(Uw) → F(Ue). Then, we can prove:

Theorem 7 (Information Theoretic Content of H0(X; F)).
For a NC sheaf F of (X,Φ), elements of the sheaf cohomology
H0(X; F) are in bijective correspondence with information
flows on the network.

This theorem makes it possible to apply homological-
algebraic tools for sheaf cohomology to network coding
problems.

III. APPLICATIONS

A. Relative Cohomology and Maxflow Bounds

Recall the definition of relative NC sheaf cohomol-
ogy H•(X,A; F) for an open set A ⊂ X: the relative
chain complex C•(X,A; F) is derived as a subcomplex

of C•(X; F) which is mapped to 0 by the surjective chain
map p• : C•(X; F) → C•(A; F). Hence, we have a short
exact sequence of chain complexes

0 // C0(X,A; F)

∂

��

i0

//

	

C0(X; F)

∂

��

p0

//

	

C0(A; F)

∂

��

// 0

0 // C1(X,A; F)
i1

// C1(X; F)
p1

// C1(A; F) // 0.
(III.1)

meaning that the above diagram is commutative and
ker(ik) = 0, im(ik) = ker(pk), im(pk) = Ck(A; F) for
k = 0, 1. The boundary maps in (III.1) are all induced
by the original one ∂ : C0(X; F) → C1(X; F). One of the
important techniques in homological algebra is the LONG
EXACT SEQUENCE induced by a short exact sequence. For
(III.1), the induced long exact sequence is:

0→H0(X,A; F)
i0→H0(X; F)

p0→H0(A; F)
δ0→H1(X,A; F)

i1→ · · ·
(III.2)

where the maps i• and p• in (III.2) are induced by
those in the short exact sequence (III.1). The map δ0 is
called the CONNECTING HOMOMORPHISM and is given
by δ0(σA) := ∂(σX), where p0(σX) = σA; furthermore,
∂(σX) ∈ C1(X; F) is identified with the element in
C1(X,A; F), since p1∂(σX) = ∂p0(σX) = ∂σA = 0 leads to
∂(σX) ∈ C1(X,A; F).

An elementary application of the long exact sequence
(III.2) yields information flow capacity bounds. This is
most transparent in the single-source scenario, S = {s}.
Consider an open set A ⊂ X − s which does not
include the source node, but does include some receiver
rj ∈ R. Then, the union of incoming edges into A (those
contained neither entirely in A or its complement) define
a CUT CA between s and rj; and any cut may be realized
as coming from some open subset A as above. Recall
that the CAPACITY of a cut CA is the sum of the edge
capacities over all edges in CA.

Lemma 8. For A ⊂ X − s containing a receiver and F any
NC sheaf:

1) cap(CA) = dimH0(A; F);
2) H0(X,A; F) = 0.

Then, we can prove the following corollary by Theo-
rem 7, Lemma 8, and (III.2).

Corollary 9. The maxflow is bounded below by the mincut.

This is, of course, superfluous and more easily proved
with less cumbersome tools. A cohomological proof,
however, may apply to situations which are currently
unknown or difficult to analyze.

B. Extensions and the Connecting Morphism

The long exact sequence of a pair (X,A) (III.2), exam-
ined in more detail and for general A ⊂ X open, reveals
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more structure in the multi-source setting. Of relevance
is the situation where one fixes a local information flow
σA on A and studies the EXTENSION PROBLEM: does σA

extend globally to a network flow respecting the coding
and capacity constraints?

Proposition 10 (Global Extendability). A local information
flow σA ∈ H0(A; F) is globally extendable if and only if it lies
in the kernel of the connecting homomorphism: δ0(σA) = 0.

C. Excision and Network Robustness

Let A ⊂ G be an open set and Z = X \ A be its
complementary closed set. For a section σ ∈ F(U), the
support of σ, denoted |σ|, is defined as

|σ| := {x ∈ U | σ|V 6= 0 for any neighborhood V ⊂ U of x}.

Consider also the subspace of F(U) for each open set
U ⊂ X given by

FZ(U) := {σ ∈ F(U) | |σ| ⊂ Z}.

Then by replacing F(Uv), F(Ue) in (II.1) with FZ(Uv),
FZ(Ue), respectively, the local cohomology with support
Z, denoted H•

Z(X; F), is defined in the same way. The
local cohomology H•

Z(X; F) is expressed in an exact se-
quence as follows [5, II.9.2]:

0→ H0
Z(X; F)

i0→ H0(X; F)
p0→ H0(A; F)

δ0→ H1
Z(X; F)

i1→ · · ·
(III.3)

where i• is induced by the inclusion map iU : FZ(U) →
F(U).

Suppose that a network experiences a failure on a sub-
network A ⊂ G. The ROBUSTNESS PROBLEM for informa-
tion flows asks under which the global information flow
σ ∈ H0(X; F) persists on Z with the removal of A.

Proposition 11 (Network Robustness). Let A ⊂ G be an
open set and Z = X\A be the complementary closed set. Then
H0

Z(X; F) represents the global information flow on the failure
network G \ A. Moreover, the network coding of F is robust
to this failure if and only if p0 = 0.

Remark 12. By the Five Lemma [3], we have the isomor-
phism Hk(X,A; F) ' Hk

Z(X; F). Hence the above argu-
ment can be explained by using only relative cohomol-
ogy. On the other hand, the long exact sequence (III.3) is
one of the examples showing the EXCISION PROPERTY.
There are several versions of long exact sequences re-
lated to excision property [5, II.9], each of which can be
used to analyze local information flows as above.

D. Mayer-Vietoris and Data Merging

In this subsection, we study a data merging problem
via homological algebra. Let U,V be open sets in X

such that X = U ∪ V. The problem of DATA MERGING
— whether local information flows on U and V can be

merged to a global information flow on X— is amenable
to an interpretation by Mayer-Vietoris exact sequence:

0→ H0(X; F)
f0→ H0(U; F) ⊕H0(V; F)

g0→ H0(U∩ V; F)
δ0→

δ0→ H1(X; F)
f1→ H1(U; F) ⊕H1(V; F)

g1→ · · · . (III.4)

Proposition 13. (Data Merging). Let U and V be open
sets in X and σU ∈ H0(U; F) and σV ∈ H0(V; F) be
local information flows on U and V, respectively. Then these
two local information flows can be merged into a global
information flow on X if and only if g0(σU, σV) = 0.

IV. CONCLUSION

This paper marks the introduction of sheaf-theoretical
tools to network coding. We anticipate one important
application of sheaf theory in our future work to be
a characterization of maxflows on general multi-source
network codings. From the viewpoint of flow-cut duality,
a derived categorical formulation of network coding
sheaves may provide us with some useful characteriza-
tions via Poincaré - Verdier duality and Morse theory.

It should be also mentioned that basic operations on
sheaves (e.g., f∗, f∗,⊗,Hom(•, •)) can be defined [3][5]
and are useful for constructing new NC sheaves or to
investigate relationships between different NC sheaves
and their cohomologies. Because of the generality of
the sheaf cohomological tools presented here, extensions
to higher dimensional base spaces are straightforward.
These theoretical extensions might be useful in network
coding situations with spacial expanse (wireless broad-
cast) or with time dependence (using the time axis R in
the base space).
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