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Abstract—In this paper, an adaptive observer is de-
signed to calibrate the force-moment sensor (FMS) of a
space robot. Assuming that the mass properties of a pay-
load are known, it is rigourously proved that the calibration
matrix can be accurately obtained, based on the measured
data from the FMS and the payload displacement recorded
by a laser vision system. The effectiveness of the design
has also been confirmed with simulation results.

1. Introduction

For the space robotic design, force-moment sensor
(FMS) is commonly installed in order to record the forces
and the moments caused by the movement of the payload
in free space. This information can greatly facilitate the
movement of a robot, and hence improve the performance
of an assigned motion task. Therefore, the accuracy of the
obtained force-moment feedback is very important, and a
precise calibration matrix, which converts the sensor read-
ing into the actual forces and moments, is demanded [1, 2].

Traditionally, the calibration matrix is obtained based
on the relations between the measurements of the known
weight-related loads and their corresponding sensors. In
[3], an extended Kalman filter has been employed to per-
form the sensor calibration of the Special Purpose Dexter-
ous Manipulator (SPDM), based on the movement of a ma-
nipulator payload recorded in free space. However, due to
the practical issues, this piece of information cannot be ac-
curately inferred from the joint measurement, making this
approach less attractive.

To overcome this limitation, the use of high-gain adap-
tive observer has been suggested in [4]. Two observers, in
corresponding to the angular and translational motions of
a planar robot, are designed so that its system states and
the calibration matrix of its FMS can be estimated. How-
ever, this design is relatively complex and a suitable ob-
server gain is to be determined so that the system can be
converged. In addition, a slow convergence rate is noticed
for the results presented in [4].

In this paper, to further improve the performance on the
estimation process of the calibration matrix, a new adaptive
observer is suggested. It is found that the body motion and
the calibration matrix can be jointly estimated with a faster
convergence rate, and it is noise-resistive.

2. Preliminary

Our problem formulation basically follows the sugges-
tions given in [4], and the free-body diagram of the studied
planar robot is depicted in Fig. 1. The pose of the robot is
described by a rotation angle θ and two orthogonally coor-
dinates X and Y , measured by a laser vision system in an
inertial frame J. The force and the moment applied on the
payload are then measured by a FMS installed.

Figure 1: The free-body diagram of a planar robot

It should be noticed that the end-effector and the payload
can be jointly treated as an unconstrained rigid body under
the action of the resultant force f and the moment M applied
[4]. Using the Newton-Euler equation [5], it is derived that: θ̈ẌŸ

 = 1
m

 m/IG −mρy/IG mρx/IG

0 cos θ − sin θ
0 sin θ cos θ


 M

fx

fy


(1)

where θ, X and Y are the displacements of the body in the
inertial frame J; m is the mass and IG is the moment of
inertia of the payload about the z-axis passing through the
center of mass G. Referring to the body-frame (denoted
as B in Fig.1, ρ = [ρx ρy] is the position vector of the
interface of the FMS with the payload, measured from the
payload’s center of mass; f and M are the resultant force
and moment applied on the payload, respectively; fx and fy
are the components of f.

Defining the actual wrench as

w =
[
M fx fy

]T
, (2)
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the measured wrench obtained by FMS, defined as ŵ =[
M̂ f̂x f̂y

]T
, will be different from w due to the sensitiv-

ity of the sensor. Their relationship can be described by:

w = Sŵ (3)

where S =
{
si j

}
is a 3 × 3 calibration matrix.

3. Adaptive Observer Design

3.1. State-space Representation of the Planar Robot

As introduced in [4], the dynamical system (1) can be
divided into two subsystems, corresponding to the angular
and the translation motions, respectively. Using a state-
affine system model [6], the angular motion is then ex-
pressed as: {

ẋ1 = A1x1 + B1(ŵ)ϕ1

y1 = C1x1
(4)

where x1 = [θ θ̇]T ; C1 = [1 0]; A1 =

[
0 1
0 0

]
;

B1(ŵ) = 1
IG

[03 ŵ]T ; and ϕ1 =

 s11 − ρys21 + ρxs31

s12 − ρys22 + ρxs32

s13 − ρys23 + ρxs33


contains the unknown parameters of the calibration matrix,
si j, as specified in (3).

Similarly, the dynamics of the translation motion are for-
mulated as: {

ẋ2 = A2x2 + B2(ŵ, θ)ϕ2

y2 = C2x2
(5)

where x2 = [X Ẋ Y Ẏ]T ; A2 =

[
A1 O2×2

O2×2 A1

]
;

ϕ2 = [s21 s22 s23 s31 s32 s33]T ; C2 =

[
C1 0T

2
0T

2 C1

]
;

B2(ŵ, θ) = 1
m

[
03 ŵ cos θ 03 ŵ sin θ
03 −ŵ sin θ 03 ŵ cos θ

]T
; 0n

and On×n denote the n-dimensional zero vector and n × n
zero matrix, respectively.

3.2. Adaptive Observer for State-Parameter Estima-
tion

Referring to the dynamical equations of the angular and
the translation motions given in (4) and (5), adaptive ob-
servers can be designed as follows:{

˙̂x1 = A1x̂1 + B1(ŵ)ϕ̂1 + u1

ŷ1 = C1x̂1
(6)

and {
˙̂x2 = A2x̂2 + B2(ŵ, θ)ϕ̂2 + u2

ŷ2 = C2x̂2
(7)

where x̂1 = [θ̂ ˆ̇θ]T ; x̂2 = [X̂ ˆ̇X Ŷ ˆ̇Y]T ; ϕ̂1 and ϕ̂2 are
the estimators for ϕ1 and ϕ2, respectively; ŷ1 and ŷ2 are the
outputs; u1 and u2 are some control signals.

The estimators, ŝi j, are adaptively updated by the follow-
ing rules:

˙̂s11 = δM̂eθ̇/IG
˙̂s12 = δ f̂xeθ̇/IG
˙̂s13 = δ f̂yeθ̇/IG
˙̂s21 = δ

[
−M̂ρyeθ̇/IG + M̂eẊ cos θ + M̂eẎ sin θ

]
˙̂s22 = δ

[
− f̂xρyeθ̇/IG + f̂xeẊ cos θ + f̂xeẎ sin θ

]
˙̂s23 = δ

[
− f̂yρyeθ̇/IG + f̂yeẊ cos θ + f̂yeẎ sin θ

]
˙̂s31 = δ

[
M̂ρxeθ̇/IG − M̂eẊ sin θ + M̂eẎ cos θ

]
˙̂s32 = δ

[
f̂xρxeθ̇/IG − f̂xeẊ sin θ + f̂xeẎ cos θ

]
˙̂s33 = δ

[
f̂yρxeθ̇/IG − f̂yeẊ sin θ + f̂yeẎ cos θ

]
(8)

where δ > 0 is a stiffness constant governing the conver-
gence rates; eθ̇ = θ̇ −

ˆ̇θ, eẊ = Ẋ − ˆ̇X, eẎ = Ẏ − ˆ̇Y , are the
state estimation errors.

The main result of this paper is enunciated in the follow-
ing theorem:

Theorem 1: Assuming that

1. The system is persistently exciting;

2. Consider a Lyapunov function V1(e1, e2) =
1
2 eT

1 e1 +
1
2 eT

2 e2, where e1 = [eθ eθ̇]
T ,

e2 = [eX eẊ eY eẎ ]T denote the angular and
translational motion state errors, respectively, there
exist controllers ui, for i = 1, 2 such that V̇1 < 0 when
ϕi are known;

3. If ϕ̂i is bounded, i.e. ||ϕ̂i|| ≤ Φ, then all the observer’s
states will be bounded, i.e. ||x̂i|| ≤ γ, under the control
ui, for i = 1, 2, with any initial conditions.

The observer system given (6) and (7) can asymptotically
synchronize with the robotic system (4) and (5), while si-
multaneously, ŝi j converge to their true values, si j. In other
word, x̂→ x and Ŝ→ S as t → ∞.

Proof: Subtracting (6) from (4), the error dynamics of
the angular model are obtained as:

ė1 = A1e1 − u1 + B1(ŵ)∆ϕ1 (9)

Similarly, subtracting (7) from (5), the error dynamics of
translational model can be expressed as:

ė2 = A2e2 − u2 + B2(ŵ)∆ϕ2 (10)

where ∆ϕi = ϕi − ϕ̂i for i = 1, 2.
Consider the following Lyapunov function:

V =
1
2

eT
1 e1 +

1
2

eT
2 e2 +

3∑
i=1

3∑
j=1

1
2δ
∆s2

i j (11)

where ∆si j = si j − ŝi j, and differentiate (11), one has

V̇ =
1
2

ėT
1 e1 +

1
2

eT
1 ėT

1 +
1
2

ėT
2 e2 +

1
2

eT
2 ėT

2 −

3∑
i=1

3∑
j=1

1
δ
∆si j ˙̂si j- 243 -



=
1
2

(A1e1 − u1)T e1 +
1
2

e1
T (A1e1 − u1)

+e1
T (B1(ŵ)∆ϕ1) +

1
2

(A2e2 − u2)T e2

+
1
2

e2
T (A2e2 − u2) + e2

T (B2(ŵ, θ)∆ϕ2)

−e1
T (B1(ŵ)∆ϕ1) − e2

T (B2(ŵ, θ)∆ϕ2)

=
1
2

(A1e1 − u1)T e1 +
1
2

e1
T (A1e1 − u1)

+
1
2

(A2e2 − u2)T e2 +
1
2

e2
T (A2e2 − u2)

= V̇1 (12)

with the assumption (2), V = V̇1 ≤ 0 and hence, the state
estimation errors converge to zero when t → ∞. Based on
assumption (1) and the Barbalat’s theorem [7], ∆si j → 0,
i.e. ŝi j → si j as t → ∞, and that completes the proof.

Remark 1: In a practical case, the time derivative func-
tions, θ̇, Ẋ and Ẏ , may not be observable, and hence eθ̇, eẊ
and eẎ are unknown. However, they can be approximated
by backward difference equation, using θ, X and Y .

4. Numerical Simulations

A number of simulations have been carried out to illus-
trate the effectiveness of the proposed design. In order to
compare the performance with the high gain adaptive ob-
server, the same settings which have been used in [4] are
adopted:

1. The payload of the mass is 2.50 kg;

2. The moment of inertia is 0.75 kgm2 attached to the
end-effector of a planar manipulator through a FMS,
located at ρ = [0.2 0.25]T meters from the center of
mass of the payload in B frame;

3. The kinematics of the payload are expressed as:
M = sin(2t) + 0.1 cos(10t) + 0.4 sin(πt + π/6)
fx = sin(t) + 0.1 cos(4.5t) + 0.4 sin(πt + π/3)
fy = 2 sin(3t) + 0.2 cos(5t) + 0.4 sin(7t)

(13)

4. The actual calibration matrix is assumed to be:

S =

 0.6110 −0.0372 −0.1445
−0.3361 1.0020 −0.1443
−0.1147 0.1674 0.9598

 .
Remark 2: The kinematics given in (13) provide the per-
sistently excitation for the system.

Referring to (6) and (7), a linear output feedback is used
as the control signal ui, which is given as:

ui = Ki(yi − ŷi) = KiCiei for i = 1, 2 (14)

where K1 = [25 25]T and K2 =

[
5 10 2 5
5 5 15 15

]T
.

Referring to Remark 1, eθ̇, eẊ and eẎ in (8) may not be
available. In our simulation, backward difference approxi-
mation is used, for example,

eθ̇(n) = θ̇(n) − ˆ̇θ(n)
' [θ(n) − θ(n − 1)] − [θ̂(n) − θ̂(n − 1)]
' eθ(n) − eθ(n − 1)

(15)

The time interval is omitted in (15) as it is absorbed in
the stiffness constant δ, which is set to be 20 in our case.
Similar expressions are obtained for eẊ and eẎ .

The vector ŵ in (6) and (7) is obtained by taking the in-

verse of (3), i.e. ŵ = Ŝ
−1

w, where the measured payload
forward dynamics are needed. Recognizing that measure-
ment and/or environmental noises are inevitably existed, a
Gaussian noise with zero mean and variance of 5% of the
amplitude to each element is added to the wrench data in
simulations. Similarly, Gaussian noise is injected to the an-
gular and translational-displacement measurements, with
zero mean and variances of 0.1◦ and 0.1mm, respectively.

Figure 2: The estimators ŝi j for si j against time

Figure 3: The estimators ŝi j for si j against time

Figure 2 depicts the values of ŝi j obtained for a simu-
lation period of 100 seconds. The integration step size is
set to be 1ms and the initial guesses of ŝi j are randomly
selected between [0, 3].- 244 -



Table 1: The values of s11, s22, s33 in 0-300s

[0 100) [100 200) [200 300]
s11 0.6110 0.3847 -0.2839
s22 1.0020 0.8144 0.5472
s33 0.9598 0.9169 1.1172

It can be observed that ŝi j converge to their correspond-
ing true values very quickly, and a transient time of about
70s is noticed. Taking the result at 100s, we have:

Ŝ =

 0.6105 −0.0366 −0.1445
−0.3358 1.0017 −0.1443
−0.1148 0.1676 0.9597

 .
In order to evaluate the accuracy of the obtained results,

the induced 2-norm of estimation error proposed in [8] is
used, which is expressed as:

E = ||I − ŜS−1|| (16)

where I is an identity matrix.
Based on the proposed observer design, E = 9.1106 ×

10−4 after 100s, which is much smaller than E = 3.6700 ×
10−2 when the high-gain observer [4] is used. Moreover,
it is also noticed that a faster convergence rate is achieved
based on our design.

A more noisy case is also investigated and the results
are shown in Fig. 3. The variance of the Gaussian noise is
increased to about 10% of the amplitude to each wrench el-
ement while the variances of the angular and translational-
displacement measurements are augmented to be 1◦ and 0.2
m, respectively. Moreover, the entities of the calibration
matrix are randomly selected within [-3, 3]. From Fig. 3,
it can be observed that a similar performance is achieved,
and hence it is concluded that the design is noise-resistive.

Figure 4: The estimators ŝi j for si j against time

Since the properties of FMS may change gradually, sim-
ulation with time-varying calibration matrix is also per-
formed. Assuming that the entities, s11, s22, s33, change
with time according to the values specified in Table 1, the

simulation results are shown in Fig.4. Clearly, these slow
variations are duly captured and true values of s11, s22, s33

are obtained. However, it should be remarked that it be-
comes incompetent if the variation changes too fast.

5. Conclusions

In this paper, a novel adaptive observer has been pro-
posed to calibrate the FMS of a planar robotic system.
By measuring the payload displacement with a laser vi-
sion system, a calibration matrix for the FMS can be ac-
curately determined. The effectiveness of the design has
been mathematically proved with the Lyapunov stability
theorem, and illustrated by numerical simulations. In ad-
dition, noisy condition and time-varying situation are also
considered, and satisfactory results are reported. As com-
pared with the design presented in [4], this new adaptive
observer is simpler in nature and a faster convergence rate
is experienced.

Acknowledgments

This work is fully supported by grants from the Research
Grants Council of Hong Kong Special Administrative Re-
gion, China, CityU 120407 and 120708.

References

[1] M. M. Sivinin, and M. Uchiyama, “Optimal geomet-
ric structures of force/torque sensors,” Int. J. Robotics
Research, vol.14, pp.560-573, 1995.

[2] P. C. Hughes, “Space structure vibration modes: How
many exist? which ones are important?” IEEE Control
Magazine, vol.7, no. 1, pp. 22C28, February 1987.

[3] F. Aghili, “On-orbit calibration of the SPDM force-
moment sensor,” in Proc. IEEE Int. Conf. Robotics and
Automation, Francisco, CA, April 2000.

[4] K. Parsa and F. Aghili, “Adaptive Observer for the
Calibration of the Force-Moment Sensor of a Space
Robot,” Proceedings of the 2006 IEEE International
Conference on Robotics and Automation Orlando,
Florida, May 2006.

[5] H. Goldstein, Classical Mechanics, 2nd ed. Reading,
MA: Addison-Wesley, 1980.

[6] J. P. Gauthier, H. Hammouri, and S. Othman, “A sim-
ple observer for nonlinear systems: Applications to
bioreactors,” IEEE Trans. Automatic Control, vol. 31,
no. 6, pp. 875C880, 1992.

[7] H. K. Khalil, Nonlinear Systems, Upper Saddle River,
N.J.: Prentice Hall, c2002.

[8] R. A. Horn and C. R. Johnson, Matrix Analysis, Cam-
bridge, England: Cambridge University Press, 1990.- 245 -


	Navigation page
	Session at a glance
	Technical program

