
Sheaf-theoretic structural analysis of computational networks

Michael Robinson†

†Mathematics Department
University of Pennsylvania

209 S. 33rd Street
Philadelphia, PA 19104

Email: robim@math.upenn.edu

Abstract—
We show how logic circuits can be encoded into a cel-

lular sheaf, and how traditional sheaf theoretic invariants
can be interpreted semantically. In this setting, there ex-
ists strictly more information available to a circuit designer
than in static truth tables, but less than in event-level sim-
ulation. This information is related to the timing behavior
of the logic circuits, and thereby provides a “bridge” be-
tween static logic analysis and detailed simulation. Future
directions are also outlined.

1. Introduction

Verification of asynchronous computational networks
usually requires extensive simulation and appropriate test
coverage. This article presents a novel technique for de-
tecting certain behavioral properties of a network using a
less exhaustive structural analysis. In this analysis, delays
are unknown and finite, but unlike the work of others in
this situation, the delays are implicit. We do not need to as-
sume that they have a fixed value over time, and we never
specify them even as variables. We show how potentially
hazardous race conditions (which often cause transients or
unwanted latching) correspond to nontrivial first cohomol-
ogy classes of a particular sheaf that encodes this implicit
timing model of the network.

1.1. Historical perspective

The design of asynchronous networks is an old subject,
having been of interest at least into the early 1950s dur-
ing the development of asynchronous controllers for dig-
ital computers. [9] Although the benefits of using asyn-
chronous hardware instead of synchronous hardware are
substantial (better composibility of modules, lower power
usage, lower electromagnetic interference, faster speed), its
challenges have generally precluded its widespread accep-
tance. Most of the difficulty of asynchronous design in-
volves careful control of delays within the circuit, and the
avoidance of race conditions. [11] Asynchronous software
has recently become more important as multicore proces-
sors become the norm. [17]

The challenges of asynchronous design in both hardware
and software revolve around timing instabilities and sensi-

tivities, which usually mean that verification requires ex-
haustive simulation. As a result of both the benefits and the
challenges, a lively literature has grown up around asyn-
chronous design and verification. There are essentially
three major threads of inquiry:

1. Specification of a semantic or behavioral model of the
network, [20, 12, 11, 14, 7]

2. Synthesis of the network from this specification, [5, 4,
15, 18] and

3. Simulation of the network to verify its correct perfor-
mance. [2, 3, 10, 13, 22]

Although there are numerous design rules and specifica-
tion languages that have been devised for reliable operation
of asynchronous networks (for instance [6] [16] [8]), these
cut a narrow path through the design space. If a network
that does not follow these design rules is to be analyzed or
verified, one needs to perform essentially exhaustive anal-
ysis. We submit that in this situation, there is another op-
tion: that of a coarser structural analysis of the network.
One should look for invariants of the network that are ro-
bust to changes in the network that preserve its semantics.
Such an anaylsis cannot completely characterize network
semantics, but should be able to detect behaviors of inter-
est.

2. A structural approach

Our approach is motivated by the insight that local net-
work analysis is often easy, even in a fully asynchronous
setting. We would like our analysis to have the following
three properties:

1. That it collates the local analysis into a global picture
of the semanics,

2. That it facilitates basic network transformations, such
as joining two subnetworks or ignoring a subnetwork,
and

3. That it manages uncertainty as a proxy for an exhaus-
tive temporal analysis.

2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

- 262 -

As it happens, these requirements are naturally met by a
family of mathematical tools called sheaf theory. Specifi-
cally, cohomology facilitates local-to-global inferences, the
Mayer-Vietoris principle relates subcircuits to their union,
and a particular categorification permits metered amounts
of uncertainty to be examined.

2.1. Cellular sheaves

A sheaf is a mathematical tool for storing local informa-
tion over a domain. We are interested in cellular sheaves
[21], which assign some algebraic object to each cell of
a cellular space. Global information is extracted from
this structure using compatability conditions of two kinds:
(1) those that pertain to restricting the information from a
lower- to a higher-dimensional cell, and (2) those that per-
tain to assembling information on small sets of cells into
information on larger ones. What is of particular interest
is the relationship of the global information, which is valid
over the entire space, to the topology of that space. This
is captured by the cohomology of the sheaf, in the way we
summarize here.

Consider on X, an oriented CW complex, the face cat-
egory in which the objects are the cells of X and the mor-
phisms c→ d connect a cell d to another cell c in its bound-
ary. A cellular sheaf F taking values in a category C is a
covariant functor from the face category of X to C. Specif-
ically, F assigns an object F (c) of C to each cell c of X,
and a morphism ρd

c in C for each cell-boundary pair c ∈ ∂d.
Borrowing from standard sheaf theory terminology [1], the
objects F (c) are called stalks and the maps ρd

c are called
corestriction maps. Likewise, we define a section of F to
be a function f on the cells of X that satisfies f (c) ∈ F (c),
and f (c) ∈ (ρd

c)−1(f (d)). If we relax the latter condition, f
is called a serration.

When a cellular sheaf takes values in a category of
abelian groups, we can define its cohomology, which is a
disciplined way of extracting global information from the
local information stored in the sheaf. Define the cellular
cochains for a cellular sheaf F to be the groups Ck(X;F) =∏

dim c=k F (c), where the c range over all k-dimensional
cells of X. The cellular cochains form a chain complex
with the coboundary map dk : Ck(X;F) → Ck+1(X;F)
coming from the corestrictions in the following way:

dk(f)(c) =
∑
d∈∂c,

dim c=dim d+1

[c : d]ρd
c (f (c)), (1)

where f is a serration of F and [c : d] = 1 if the orienta-
tions of c and d agree and -1 otherwise. The usual algebraic
manipulation shows that dk+1dk = 0. If f is a section (not
just a serration), then dk(f) = 0, so we define the cohomol-
ogy of F to be

Hk(X;F) = ker dk/image dk−1. (2)

H0(X;F) can be shown to be isomorphic to the group of
sections of F , and Hk(X;F) = 0 when k > dim X.

3. Switching sheaves

Suppose that X is an oriented CW complex. If c, d are
cells of X such that c ∈ ∂d and dim d = dim c+ 1, then c is
called a face of d. We call d a coface of c. If c and d agree
about orientation, we call them co-oriented.

SupposeQ is a cellular sheaf on an oriented cell complex
X. We will say that Q is a quiescent switching sheaf based
on a set A if for all cells c ∈ X,

1. the stalk Q(c) = A if c has no co-oriented cofaces,

2. otherwise, the stalk Q(c) =
∏

d Q(d) where d ranges
over the co-oriented cofaces of c, and

3. the corestriction Q(c) → Q(e) function is the projec-
tion onto the factor in the product Q(c) =

∏
d Q(d)

associated to e.

Unfortunately, quiescent switching sheaves are not gen-
erally sheaves of abelian groups. As a result, we cannot
compute their cohomology. We correct for this problem by
encoding the values of A in an F-vector space. Consider the
function T : A→ F ⊗ A, given by the inclusion x 7→ 1 ⊗ x.
This T lifts the corestrictions to F-linear maps. Applying
this idea in our definition of quiescent switching sheaves
corresponds to a particular categorification.

Casual examination suggests that very little has changed,
except the algebraic structure has been slightly enhanced.
However, two new things have occured:

1. Problems of logic can now be addressed computa-
tionally using the framework of linear algebra. This
can result in gains in asymptotic computational com-
plexity. Rather than being forced to enumerate states
over the set A, one may instead perform standard
polynomial-time linear algebra (over the vector space
F ⊗ A).

2. It is possible to superpose two logic states, and thereby
study certain kinds of transitions between logic states.
This is subtle and somewhat surprising: we have not
explicitly described anything about time evolution of
circuits, and indeed the usual way of examining the
states of a logic circuit does not concern itself with
time. However, by permitting superposed states, we
are able to study the circuit’s response to both simul-
taneously and thereby discern the way that one might
transition to the other. Any section of a switching
sheaf that vanishes anywhere must be the linear su-
perposition of two or more sections of the underlying
quiescent switching sheaf, and therefore describes un-
certainty or transient states.

We therefore define a switching sheaf to be a cellu-
lar sheaf that is the categorification via T of a quiescent
switching sheaf. This essentially amounts to rewriting the
definition of quiescent switching sheaves by replacing the
Cartesian product with a tensor product, and the corestric-
tion maps become contractions instead of projections.

- 263 -

a b
c

A
W

Figure 1: An R-S flip-flop circuit

3.1. An example

Consider the circuit X shown in Figure 1, which is a ba-
sic memory element. We split it into two pieces: a combi-
national circuit A with a 3-input gate, and a feedback wire
W. The logic states for this circuit [20] are summarized in
the following table:

a b c q Description
0 0 1 1 Danger
0 1 1 1 Set
1 0 0 0 Reset
1 1 0 0 Hold zero
1 1 1 1 Hold one

We construct a 1-dimensional cellular space that repre-
sents the connections in the circuit, called the connection
graph. This particular directed graph X has one vertex, rep-
resenting the three-input gate, one directed self-loop, and
two additional directed edges incident on the vertex and di-
rected toward it. On this directed graph, we construct a
quiescent switching sheaf Q based on the finite set {0, 1}.
From the definition, it is clear that the stalk over each edge
is the set {0, 1} and the stalk over the vertex is the set of
ordered binary triples.

The categorification T : {0, 1} → F2 ⊗ {0, 1} of Q yields
a switching sheaf S. Since the stalk of S over the vertex
is the tensor product of 3 copies of {0, 1}, it is an F2-vector
space of dimension 8. The corestrictions from the vertex to
each input edge are given by the following matrices:(

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

)
, (3)

(
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1

)
, (4)

and (
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

)
. (5)

The corestriction from the vertex to its output edge (which
is a self loop) is given by(

0 0 0 0 1 1 1 0
1 1 1 1 0 0 0 1

)
. (6)

Computation of the cohomology shows that H0(X;S) has
dimension 7 and H1(X;S) has dimension 1. Here is a basis
for H0(X;S):

Element of H0(X;S) Description
a ⊗ b ⊗ c Danger
a ⊗ b ⊗ c Set
a ⊗ b ⊗ c Reset
a ⊗ b ⊗ c Hold zero
a ⊗ b ⊗ c Hold one

a ⊗ b ⊗ c + a ⊗ b ⊗ c Transition Danger to Reset
a ⊗ b ⊗ c + a ⊗ b ⊗ c Transition Danger to Set

Of most interest are the last two basis elements. These are
linear combinations of two terms, neither of which is a T -
lift of a section of Q. The most suggestive interpretation
is that they imply an uncertainty when exiting the Danger
state. As the inputs a and b transition from both logic 0 to
both logic 1, there is a race condition. Only one of them
transitions first, so there is a brief transition into the Set
or Reset states before entering a Hold state. If we add the
last two basis elements, we obtain a ⊗ b ⊗ c + a ⊗ b ⊗ c
which indicates that an uncertainty about which of a or b
transitions has occured results in uncertainty in the signal
c.

3.2. Invariants and semantics

It is clear from the example that switching sheaves con-
tain strictly more information than simply the logic states
of a circuit, which are encoded as sections of Q. Using
the Mayer-Vietoris principle [1] for cellular sheaves, it is
possible to relate the cohomology of a circuit composed of
simpler circuits to the cohomology of each of these subcir-
cuits.

Theorem: [19] The effect of attaching a wire is best de-
scribed by the following slogan:

• Attaching a wire that does not participate in feedback
suppresses logic states and leaves H1 unchanged.

• Attaching a wire that participates in feedback leaves
logic states unchanged and adds to the dimension of
H1.

As an immediate corollary, nontrivial H1 of a switching
sheaf detects race conditions.

4. Future work

The most evident area for development involves the in-
terpretation of higher dimensional switching sheaves and
their associated cohomology. It seems likely that a thor-
ough analysis of the higher cohomology will permit seman-
tic comparison between circuits, much as cartesian prod-
ucts of finite state machines are crucial in their comparison.
To this end, it will be interesting to determine the relation-
ship between semantic equivalence and switching sheaves

- 264 -

with isomorphic cohomology. It is likely that the two con-
cepts are intimately connected, but that one does not imply
the other.

It also remains to quantify precisely what features of
circuit behavior are captured by categorification. For in-
stance, it is immediate that complicated sequential seman-
tics will not be captured by the categorified model. How-
ever, it is possible that a filtration structure may permit both
the cohomological outlook as well as the manipulation of
timeseries. In doing so, we will likely figure out exactly
how glitch and hazard transitions of logic circuits are rep-
resented (or not) by the cohomology of switching sheaves.

Finally, it is straightforward to compute the cohomology
of a switching sheaf automatically in software. Our initial
experiments with this software model indicate that there
is a delicate relationship between the combinatorial struc-
ture of a cellular space and the cohomology of switching
sheaves over that space.

Acknowledgments

This work was supported under AFOSR FA9550-09-1-
0643. The author would additionally like to thank Dr. Yasu
Hiraoka for insightful discussion about this work and the
invitation to the NOLTA conference.

References

[1] Glen Bredon. Sheaf theory. Springer, 1997.

[2] Michael Browne, Edmund Clarke, David Dill, and
Bud Mishra. Automatic verification of sequential cir-
cuits using temporal logic. IEEE Transactions on
Computers, C-35(12), December 1986.

[3] E. M. Clarke and O. Grümberg. Avoiding the state
explosion problem in temporal logic model checking
algorithms. In Proceedings of the sixth annual ACM
Symposium on Principles of distributed computing,
pages 294–303, 1987.

[4] David Cox. Complete synthesis method for d flip-
flops with set and reset inputs. In 9th NASA Sympo-
sium on VLSI Design, November 2000.

[5] Al Davis and Steven Nowick. An introduction
to asynchronous circuit design. Technical Report
UUCS-97-013, University of Utah Computer Science
Department, September 1997.

[6] Jordi Cortadella et al. Logic synthesis for asyn-
chronous controllers and interfaces. Springer, 2002.

[7] John Harrison. Formal proof - theory and practice.
Notices of the AMS, 55(11):1395–1406, December
2008.

[8] C. A. R. Hoare. Communicating Sequential Pro-
cesses. 2004.

[9] D. A. Huffman. The synthesis of sequential switching
circuits. Technical Report 274, Research Laboratory
of Electronics, MIT, 1954.

[10] Nagisa Ishiura, Mizuki Takahashi, and Shuzo Yajima.
Time-symbolic simulation for accurate timing veri-
fication of asynchronous behavior of logic circuits.
In 26th ACM/IEEE Design Automation Conference,
1989.

[11] Rajit Manohar and Alain Martin. Quasi-delay-
insensitive circuits are turing-complete. In Second
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, 1995.

[12] Alain Martin. The limitations to delay-insensitivity in
asynchronous circuits. Technical Report Caltech-CS-
TR-90-02, Computer Science Department, California
Institute of Technology, 1990.

[13] Gerd Meister. A survey on parallel logic simulation.
Technical report, University of Saarland, Department
of Computer Science, 1993.

[14] L. G. Meredith and D. Snyder. Knots as processes. In
Traced Monoidal Categories Workshop, 2007.

[15] Yannick Monnet, Marc Renaudin, and Régis Leveu-
gle. Designing resistant circuits against malicious
faults injection using asynchronous logic. IEEE
Transactions on Computers, 55(9), September 2006.

[16] Joachim Parrow. An introduction to the π-calculus. In
Bergstra et al., editor, Handbook of Process algebra.
Elsevier, 2001.

[17] D. Patterson. The trouble with multicore. IEEE Spec-
trum, July 2010.

[18] Dumitru Potop-Butucaru. Correct-by-construction
asynchronous implementation of modular syn-
chronous specifications. Fundamenta Informaticae,
78:131159, 2007.

[19] M. Robinson. Asynchronous logic circuits and sheaf
obstructions, arxiv:1008.2729 (submitted). In
GETCO, 2010.

[20] Claude Shannon. A symbolic analysis of relay and
switching circuits. Master’s thesis, MIT, 1940.

[21] A. Shepard. A cellular description of the derived cat-
egory of a stratified space. PhD thesis, Brown Uni-
versity, 1985.

[22] Vida Vakilotojar. Induced Hierarchical verification of
asynchronous circuits using a partial order technique.
PhD thesis, University of Southern California, 2000.

- 265 -

	Navigation page
	Session at a Glance
	Technical Program

