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CentraleSupelec - Université de Lorraine, 2 rue Edouard Belin, F-57070 Metz, France.

∗ Institute of Solid State Physics, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria.

Email: mvirte@b-phot.org

Abstract—In this contribution, we focus on the double-

scroll polarization chaos dynamics that can be generated in

free-running vertical-cavity surface-emitting laser diodes.

At first glance, the two scrolls of the chaotic attractor seems

to be symmetrical, but we report here clear experimen-

tal indications that the dynamics is in fact asymmetric: in

particular, we unveil a peculiar statistical evolution of the

dynamics. Physically, we demonstrate that the symmetry

breaking mechanism corresponds to a misalignment of the

phase and amplitude anisotropies in the laser cavity. By in-

troducing this additional feature in the theoretical spin-flip

model for VCSELs, we can then efficiently reproduce all

the dynamics observed experimentally. Finally, we address

the problematic of exploiting polarization chaos in chaos-

based applications. We make a proof-of-concept demon-

stration of a random bit generation scheme based on po-

larization chaos, and despite non-optimal characteristics of

the dynamics, we successfully obtain performances com-

petitive with other state-of-the-art systems.

1. Introduction

Semiconductor lasers are classified as class B lasers [1,

2], i.e. devices typically exhibiting two degrees of freedom,

and therefore behave as damped nonlinear-oscillators. As

a result, to generate a chaotic output with a laser diode at

least one additional degree of freedom is required. In prac-

tice, external perturbation or forcing such as optical injec-

tion, feedback or modulation are used to induce chaotic be-

haviour in the lasers. But an additional degree of freedom

can also appear directly inside the device itself: we recently

showed that the polarization mode competition in vertical-

cavity surface-emitting lasers (VCSELs) could indeed lead

to chaotic dynamics [3].

The dynamics and the corresponding bifurcation scenario

can be accurately reproduced in the spin-flip model (SFM)

framework for VCSELs [4, 5]. When increasing the injec-

tion current, the linear polarization (LP) stable at threshold

is first destabilized by a pitchfork bifurcation which creates

two elliptically polarized (EP) states. These two steady-

states are symmetrical with respect to the LP at thresh-

old and experience the same bifurcations although with a

different orientation of the polarization. Two supercriti-

cal Hopf bifurcations create symmetrical limit cycles, and

then the system follows a period-doubling route to chaos.

As a result, two single-scroll chaotic attractors oscillating

around the two unstable EP co-exist. As they grow in the

phase space along with the injection current, they finally

merge to form a double-scroll attractor [3, 6].

2. Symmetry breaking and dynamical impact

As described above, in the SFM framework the system

exhibits a perfect symmetry between the two EP orienta-

tions and therefore between the two scrolls of the chaotic

attractor. However, this perfect symmetry does not match

the experimental observations.

First, in the chaotic devices we observed a peculiar bista-

bility between two limit cycles oscillating around the two

EP orientations [7]. Although the co-existence of the two

limit cycles was expected, the difference of amplitude and

frequency, along with the clear hysteresis cycle between

the two periodic solutions, does not correspond to a sym-

metrical system. Similarly, statistical features of the polar-

ization chaos dynamics also support this interpretation. As

displayed in Fig. 1, the average dwell-time - i.e. the time

between two successive jumps between the two EP orienta-

tions - shows, in some devices, a strongly asymmetric evo-

lution for increasing injection currents. Not only one EP

orientation is preferred over the other - we observe a differ-

ence in the average dwell-time up to 2 orders of magnitude

-, but this affinity is changed for different levels of current,

accompanied by a relatively strong increase of the aver-

age dwell-time. At larger currents, the difference between

the two sides of the attractor are reduced as the dwell-time

tends toward the nanosecond level for both orientations. At

this point, it is important to notice that this behaviour is

not observed in all chaotic devices as mentioned in [8]. In-

deed some VCSELs show statistical features much closer

to the simple exponential decrease observed for the sym-

metric case.

Theoretically, the spin-flip model (SFM) used so far
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Figure 1: (Top) Typical time-series of the polarization

chaos dynamics projected at 45◦ of the LP at threshold.

The blue and red frame highlight the upper and lower lev-

els of the time trace corresponding to the two EP orien-

tations. (Bottom) Strongly asymmetrical evolution of the

dwell-time statistics of the dynamics for increasing injec-

tion currents. The blue squares (red empty triangles) show

the evolution for the upper (lower) level of the time-series.

and with which polarization chaos dynamics and its corre-

sponding bifurcation scenario can be accurately reproduced

is not sufficient any longer. Within this framework the two

EP orientations are perfectly symmetric and therefore no

differences can arise between the two sides of the chaotic

attractor. In order to enable the emergence of asymmetrical

features we therefore need a symmetry breaking mecha-

nism. As described in [9], a misalignment of the phase and

amplitude anisotropy can efficiently play this role, and thus

the equation of SFM becomes:

Ṙ+ =κ(N + n − 1)R+ − R−
(

γacos(φ) + γ+p sin(φ)
)

Ṙ− =κ(N − n − 1)R− − γaR+cos(φ) + γ−p R+sin(φ)

φ̇ =2καn + γasin(φ)

(

R−

R+
+

R+

R−

)

+

(

γ−p
R+

R−
− γ+p

R−

R+

)

cos(φ)

Ṅ =γ(µ − N − (N + n)R2
+ − (N − n)R2

−)

ṅ = − γsn − γ((N + n)R2
+ − (N − n)R2

−)

with R± the electrical field amplitude for the right (+) and

left (-) circular polarizations, φ the phase difference be-

tween the two circular polarizations, N the normalized to-

tal carrier population and n the normalized carrier popula-

tion difference between the two reservoirs. κ is the elec-

tric field decay rate in the cavity, γ is the carrier decay

rate and γs is the spin-flip relaxation rate that accounts for

the spin homogenization of the spin up and spin down car-

rier populations. α is the linewidth enhancement factor,

µ is the normalized injection current. Finally, the phase

anisotropy or birefringence is γp whereas γa is the am-

plitude anisotropy. For simplicity, we define the effective

anisotropies: γ±p = γp ∓ sin(2θ)γa and γa = cos(2θ)γa. θ

is defined as the angle between the axis of maximum fre-

quency and the axis of maximum losses. Unless stated oth-

erwise, we use the following parameters: κ = 600 ns−1,

α = 3, γa = −0.7 ns−1, γp = 5 ns−1, γ = 1 ns−1 and

γs = 100 ns−1.

In Fig. 2, we show the impact of such anisotropy mis-

alignment on the bifurcation diagram of the system: we

see that the pitchfork bifurcation is immediately destroyed

for θ , 0, hence forming one main branch connected to

the LP state stable at threshold and a second branch created

by a saddle-node bifurcation. As a result of this separation,

we observe that the two Hopf bifurcations creating the limit

cycles - which will be later be degenerated to single-scroll

chaotic attractors - appear at different injection currents. In

fact, we observe a shift of the complete bifurcation sce-

nario, thus leading e.g. to the limit cycle bistability high-

lighted in [7].

For some set of parameters, we also observed a restabiliza-

tion of the two limit cycles within the region of polarization

chaos. Interestingly, these cycles are only marginally stable

and a tiny amount of spontaneous emission noise is suffi-

cient to kick the system out of their basin of attraction. Yet,

their existence influences the statistics of the dynamics and

typically leads to an increase of the dwell-time. Then con-

sidering an asymmetric case, the stability range of the two

restabilized limit cycles will shift, therefore impacting only

one side of the chaotic attractor at a time. As a result, an

asymmetrical evolution similar to the one displayed in Fig.
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Figure 2: Evolution of the bifurcation diagram in the A =

R2
+/(µ − 1) versus increasing injection current plane with-

out (top, a) and with (bottom, b) anisotropy misalignment.

The black line is the steady-state stable at threshold while

the blue line shows the EP steady-state(s). Red circles, dia-

monds and stars represent pitchfork, Hopf and saddle-node

bifurcations respectively. The green and orange curves are

the limit cycles created by the two Hopf bifurcations on the

upper and lower EP orientations respectively. Thick (thin

dashed) lines indicate stable (unstable) steady-states. For

simplicity, no stability information is displayed for limit

cycle branches.
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1 will be obtained. In practice, with the parameters used

in this contribution and a noise level of only βsp = 4.10−9

- which is few orders of magnitude lower than what can

be expected in a VCSEL device -, we demonstrated a good

agreement with the experimental results [8].

3. Applications of the polarization chaos dynamics

Obviously, from the applied physics viewpoint, the main

interest of generating a chaotic output without the need

for external perturbation or forcing is the simplicity of the

resulting physical setup as in e.g. [10, 11]. But a quick

comparison with state-of-the-art solutions for chaos-based

applications highlights some potential drawbacks of the

polarization chaos dynamics such as its low-dimension

and its limited bandwidth [12, 13, 14]. Indeed these

characteristics have been identified as crucial properties to

ensure high-performances for chaos-based applications,

and it therefore casts some doubts about the potential of

polarization chaos-based systems.

To verify these assumptions, we put in place a random

bit generation (RBG) scheme based on polarization chaos

from a free-running laser diode. As expected the physical

setup presented in Fig. 3(a) is extremely simple: the

chaotic polarization fluctuations are just converted in

intensity fluctuations using a polarizer and then recorded

using a photodiode and an analog-to-digital converter.

For simplicity, the collimation lens, the fiber coupler

sending the optical signal to the photodiode and the optical

isolator preventing back reflections from the fiber front

facet are not represented. All the details of the setup

and the equipment used can be found in [15]. It is also

important to remark that the optical power received by

the photodiode has been adjusted to ensure that the 8-bit

range of the ADC is fully covered. Nevertheless the

8-bit output cannot directly be exploited as a random

sequence; a suitable post-processing technique need to

be considered similarly to what is done in other schemes

[11, 13, 16]. One simple solution consist in keeping only

some of the least significant bits (LSBs) of each data

point of the time-series. Unfortunately in our case this

method lead to a biased output bit sequence even at low

sampling rate and considering only 1-LSB. As a result, we

decided to use a slightly more complex technique where

we compare the recorded time-series with a time-shifted

version of itself. In practice, with a time-shift of 0.25 ns

and keeping 5-LSBs at a sampling rate of 20 GSamples/s,

the output bit sequence pass all the NIST and dieHard

statistical tests [17, 18]; details can be found in [15]. This

result therefore suggest that performances up to 100 Gbps

could be obtained with the suggested scheme which is

competitive with the latest report.

Besides the performance itself, it is important to un-

derstand why we were able to obtain such result. In-

deed, we successfully obtain a random sequence from a
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Figure 3: (a) Schematic of the physical part of the proposed

random bit generation scheme based on polarization chaos.

Using a polarizer oriented, the chaotic polarization fluctua-

tions are transformed into an intensity signal which is then

recorded using a low-bandwidth photodiode (2.4 GHz) fol-

lowed by an ADC. (b) Representation of the attractor of

polarization chaos projected in the Stokes parameter space.

low-dimensional chaotic dynamics recorded using a small-

bandwidth photodiode, while so far, most schemes have

been optimized to increase the system bandwidth with-

out detailed consideration of the dynamics peculiaritiesO-

liver2013. In [15], we demonstrate that the filtering from

the acquisition electronics actually plays the role of a first

randomness extraction stage. Although this is quite un-

intuitive, the low-pass filter leads to a significant increase

of the 1-bit entropy [14] as the largely correlated oscilla-

tions around the two wings of the chaotic attractor - shown

in Fig. 3(b) - are filtered out. This is mainly due to the

fact that the largest finite-time Lyapunov exponent is small

when the system oscillates around one EP orientation while

much larger values appear close to the switching point. The

random-like hopping between the two sides of the chaotic

attractor are therefore the events generating most of the

randomness. Hence, in this case, focusing on how to har-

vest these events will have a stronger impact on the perfor-

mances than an increase of the dynamics bandwidth.

4. Conclusion

The observation and identification of polarization chaos

represent a significant step forward in our understanding of

the nonlinear dynamics of VCSEls. It confirms the validity

of the SFM framework for VCSELs, and provides a deeper

insight on the impact of anisotropies on VCSEL dynam-

ics. Of course, these results also motivate further theoret-

ical and experimental investigations which would allow us

to fully understand VCSEL nonlinear behaviour.

On the other hand, we also demonstrate competitive per-

formances for RBG applications using this chaotic dynam-
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ics. Despite dynamical features seemingly non-optimal for

chaos-based applications, the proposed scheme showed an

interesting potential in line with the most recent reports

[16, 19, 13]. In addition, our work highlights anew the

importance of considering the intrinsic dynamical proper-

ties of the chaotic signal to improve current systems fur-

ther. Finally, these results also encourage testing polariza-

tion chaos dynamics for other chaos-based applications.
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