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Abstract—We provide an efficient algorithm utilizing
discrete Morse theory to dramatically reduce the size of
a persistence complex while preserving its persistent ho-
mology groups. Significant gains in both time taken and
memory consumed are observed when we compare to the
existing methods of computing persistent homology. Our
technique is not restricted to cubical, simplicial or even CW
complexes.

1. Introduction

Persistent homology has become ubiquitous in the topo-
logical analysis of data since its inception in [3] and sub-
sequent refinement in [13]. However, the standard algo-
rithm for the computation of persistent homology groups
of a persistence complexF with n cells over a fieldF as
described in [13] relies on the Smith Normal Form over
the PIDF[t]. The optimal known implementation of the
Smith Normal Form over the integers, for instance, is of
super-cubical complexity inn (see [10]). For many appli-
cations involving large persistent complexes, the standard
algorithm is unfeasible in terms of both time and memory
costs.

Some progress has been made in efficient computation
of persistent homology, for instance in [12], but the ef-
ficiencies obtained via this method are applicable only to
cubical datasets with little hope for generalization to other
types of complexes. Recent approaches reduce the com-
plexity to matrix multiplication time as in [8], but practical
implementations of the Coppersmith-Winograd algorithm
(see [2]) for matrix multiplication remain elusive.

An alternative to these methods is to reduce the persis-
tence complex directly without changing the persistent ho-
mology groups. If we have a single complexX then dis-
crete Morse theory from [4] provides an excellent theoret-
ical tool for reducing the size of the complex. There are,
however, large gaps in terms of practical implementations.
Some progress has been made towards finding optimal dis-
crete Morse functions on triangulated 2-manifolds in [7]
but we know little about generalizing such results to higher
dimensions and more general complexes.

Even if we are given a discrete Morse functionµ : X →
R, the process of computing homology requires summing
multiplicities over all gradient paths linking critical cells of

adjacent dimension (see [4, Def. 8.6]), but enumerating all
these paths is a combinatorially explosive proposition. We
use an extended version (see [5]) of the theory of coreduc-
tion from [9] to construct discrete Morse persistent com-
plexes efficiently from any persistence complex. We also
implement a caching strategy to avoid the exponential cost
of summing over paths.

The rest of this paper is arranged as follows. In section
2 we provide the basic definitions and prior results that we
have used in our work. In section 3 we describe our main
algorithm. We also provide certain details of implementing
this algorithm in C++ along with a comparison to existing
software.

2. Preliminary Definitions and Results

Let R be a principal ideal domain throughout the paper.

2.1. Persistent Complexes and Persistent Homology

The following definition pertains to combinatorial com-
plexes of cells as developed by Tucker and Lefschetz (see
[11] and [6]).

A complexoverR is a finite graded setX =
⊔

qXq with
eachξ ∈ Xq being called acell of dimension qalong with a
functionκ : X × X → R called anincidence functionsuch
that for anyη andξ ∈ X,

1. κ(η, ξ) , 0 implies dimη = dimξ + 1, and

2.
∑
ζ∈X κ(η, ζ) · κ(ζ, ξ) = 0.

ConsiderX′ ⊂ X such that for anyη ∈ X′ we have
{ξ ∈ X | κ(η, ξ) , 0} ⊂ X′. Such a subsetX′ is called a
(closed)subcomplexof X. We see immediately that the re-
striction of κ to X′ × X′ defines an incidence function on
X′.

We denote each free moduleR(Xq) by Cq(X) and call its
elements theq-chains. The basis elements of this module
are precisely the cellsξ in Xq. We will distinguish theq
chain corresponding toξ from the cellξ by denoting the
chain aŝξ. The incidence functionκ induces the associated
boundary operators∂q : Cq(X)→ Cq−1(X) via

∂(̂η) =
∑

ξ∈X

κ(η, ξ)̂ξ (1)
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and the properties ofκ ensure the familiar property∂q−1 ◦

∂q ≡ 0. Finally, theqth homology group ofX is defined
to be the quotient moduleHq(X) = ker∂q/img ∂q+1. The
computation of homology groups involves expressing the
matrix representation of each∂q with respect to the bases
Xq andXq−1 in Smith Normal Form.

Now consider a sequenceF =
{
Xk
}

of complexes so that

eachXk is a subcomplex of the subsequentXk+1. This en-
tire sequence is called apersistence complex. Let κk denote
the incidence product of eachXk with the understanding
that κk+1|Xk×Xk ≡ κk. Therefore, each boundary operator
∂k+1 also restricts to∂k onXk. That is, each inclusion map
ik : C(Xk) → C(Xk+1) is achain map. The p-persistent q-
th homology groupof Xk as defined in [13] is the quotient
module

Hp
q (Xk) =

ker∂k
q

ker∂k
q ∩ img ∂k+p

q+1

(2)

where the quotient makes sense when each module in sight
is regarded as a submodule ofCq(Xk+p). It has been shown
in [13] that if R is a field then each generator of the persis-
tent homology groups ofF may be represented by a family
of intervals of the type (k1, k2) with k1 < k2 wherek1 is the
first value ofk for which the generator is an element of
ker∂k andk2 is the first value ofk where the generator is an
element of img∂k.

In the subsequent sections, we describe how discrete
Morse theory is used to reduce eachXk to an associ-
ated Morse complexAk via chain equivalent mapsψk

q :
Cq(Xk)→ Cq(Ak) andφk

q : Cq(Xk)→ Cq(Ak) such that

1. EachAk is a subcomplex ofAk+1 with a given inclu-
sion mapjk : C(Ak)→ C(Ak+1).

2. The chain maps commute with inclusions. That is,
ψk+1 ◦ ik ≡ jk ◦ ψk andφk+1 ◦ jk ≡ ik ◦ φk.

The first condition guarantees that the Morse complexes{
Ak
}

form a persistence complex which we callM, and the
second condition guarantees that the persistent homology
groups ofF andM are isomorphic. Some details have
been omitted here due to space considerations, but these
will be supplied in an upcoming publication.

2.2. Excision of Cell Pairs

The relationship between a cell complexX and its Morse
complexA has been described in [4]. Following the rein-
terpretation in [1], we partition the cells ofX into three
categoriesA,K andQ. The cellsA ⊂ X which eventually
form the reduced Morse complex are calledcritical. The
other two cell categories, denotedK andQ are required to
be bijective via a correspondencep : K → Q such that for
eachK inK the incidenceκ(K, p(K)) is a unit inR. Such a
decomposition (A, p : K → Q) of a complexX is known
as anacyclic matching.

Each pair of cellsK ∈ K andQ = p(K) ∈ Qmay then be
removed from the complex altogether. The unit incidence

κ(K,Q) is used to clear out the column ofK and the row of
Q in the matrix representation of the boundary operator∂

via the elementary row and column operations

κ(η, ξ)← κ(η, ξ) −
κ(K, ξ) · κ(η,Q)

κ(K,Q)
(3)

Since these operations are admissible moves towards com-
puting the Smith Normal Form, the homology groups of the
complexX are isomorphic to those of the reduced complex
X \ {K,Q}. Proceeding in this fashion, we may remove all
the paired cells inK andQ from X without changing the
homology groups. The boundary operator on the remaining
critical cellsA is denoted∆ and called the Morse boundary
operator. It may be directly read off from the boundary ma-
trices after all the paired cells have been removed via the
operations described in equation (3).

These row operations and their inverses correspond to
well-defined chain mapsφq andψq as described at the end
of the preceding section.

2.3. Reduction of Persistence Complexes

Given a persistence complexF =
{
Xk
}
, we will describe

the construction of acyclic matchings (Ak, pk : Kk → Qk)
of eachXk such that the obvious inclusion and restriction
requirements are satisfied on the critical and paired cells.
That is, we have

1. Ak ⊂ Ak+1,Kk ⊂ Kk+1 andQk ⊂ Qk+1.

2. pk+1|Kk ≡ pk

Note that the second requirement forces the pairings to re-
spect the indexk. That is, cells inXk+1 \ Xk may only be
paired with each other. These conditions suffice to ensure
that the following diagram commutes

. . .
ik−1

−→ C(Xk)
ik
−→ C(Xk+1)

ik+1

−→ . . .

ψk

y
xφk ψk+1

y
xφk+1

. . .
jk−1

−→ C(Ak)
jk

−→ C(Ak+1)
jk+1

−→ . . .

whereψk andφk are the chain equivalences between each
complexXk and its Morse complexAk. From this commu-
tative diagram, we immediately have the two desired prop-
erties from the end of section 2.1.

3. Algorithms, Implementation and Results

Before describing any algorithms, we summarize use-
ful notation pertaining to persistence complexes. First, we
abuse notation slightly to writeη ∈ F to indicate thatη
is a cell in some complexXk belonging to the persistence
complexF . For any cellξ in F , define

bd(ξ) = {η ∈ F | κ(ξ, η) , 0}

cb(ξ) = {η ∈ F | κ(η, ξ) , 0}
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We call bd(ξ) the set ofboundary cellsor simply bound-
ariesof ξ andcb(ξ) the set ofcoboundary cellsor cobound-
ariesof ξ. Note that for a persistence complexF =

{
Xk
}
,

the notion ofbd is well defined independent of the index
k. That is, if ξ ∈ Xk thenbd(ξ) ⊂ Xk since we have the
subcomplex property andκ restricts as expected to lower
values ofk. However, a cellξ may have differentcb’s de-
pending on which complexXk is being considered. We
remove the ambiguity by insisting thatcb(ξ) be the union
of cb(ξ)’s over all the nested complexesXk.

3.1. Coreduction

The coreduction homology algorithm was first intro-
duced in [9] to reduce the size of a single complexX with-
out altering its (reduced) homology groups. Anelementary
coreduction pairis defined to be a pair of cellsK and Q
in a complexX such that∂K̂ = u · Q̂, whereu is a unit in
R. Clearly, this is a special case of the cells paired in an
acyclic matching. The advantage of restricting attention to
coreduction pairs is apparent when one considers the ma-
trix operations in (3). If we excise the pair (K,Q), we only
need to updateκ(η, ξ) when bothκ(K, ξ) and κ(η,Q) are
non-zero. But ifQ is the only solution inX of κ(K, ∗) , 0,
then there is no need to updateκ at all and the traditional
costs associated with Smith Normal Form computation are
not encountered.

The coreduction algorithm relies on excising a cell of
minimal dimension from a given complexX and then re-
moving all possible elementary coreduction pairs until no
more pairs are found. A method to keep creating and re-
moving coreduction pairs by choosing new minimal cells
once the traditional algorithm halts may be found in [5].
The only additional cost comes from computing the bound-
aries of the newly chosen minimal cells, but the precise for-
mula for the new boundaries comes from discrete Morse
theory.

We extend this new coreduction technique from [5] to
persistent complexes so that the properties of the commut-
ing diagram from section 2.3 are preserved.

3.2. Main Algorithm

We provide an algorithm to construct a Morse persis-

tence complex from a persistence complexF =
{
Xk
}K
1

.

First, associate to each cellξ ∈ Xk a descending gradient
path g(ξ) which is an element ofC(Ak). The gradient path
for each cell in the filtrationF is initialized to the trivial
chain and will be populated as the algorithm proceeds. On
termination, the gradient pathg(A) for eachA in the Morse
persistence complexM will hold the chain corresponding
to ∆Â, the Morse boundary. Thus, the storage of gradient
paths at each step bypasses the cost of summing multiplic-
ities over paths as in [4] completely.

The main idea is to pick as critical a cell of minimum
dimension inXk for the lowestk such thatXk is non-empty
and then perform the usual coreduction algorithm from [9].

Here is a simple subroutine that allows us to populate the
gradient paths of coboundaries of a given cell.

Algorithm: UpdateGradientPath
In: ξ ∈ F ; Out: Updatesg(η) for all η ∈ cb(ξ)
01 for eachη ∈ cb(ξ)
02 if ξ ∈ Ak for some k
03 g(η)← g(η) + κ(η, ξ) · ξ̂
04 else
05 g(η)← g(η) + κ(η, ξ) · g(ξ)
06 end if
07 end for

Finally, here is our coreduction-based algorithm for reduc-
ing F toM. For simplicity and to emphasize that we only
need to store each cell once rather than save a copy for each
subcomplexXk containing that cell, we partition the cells
in the persistence complex

⋃
kX

k by settingB1
= X1 and

Bk
= Xk \ Xk−1 for higherk.

Algorithm: MorseReduce

In: F =
{
Xk
}K
1
=

{
Bk
}K
1

; Out: M =
{
Ak
}K
1

01 for each k ∈ {1, . . . ,K}
02 while Bk

, ∅

03 Pick A ∈ Bk of min dimension

04 Ak ← Ak ∪ {A};
05 updateGradientPath(A)
06 Bk ← Bk \ {A}
07 Que := Empty Queue of Cells

08 Que ← A
09 while Que , ∅
10 Que → K
11 if ∂K̂ = 0
12 Que ← cb(K)
13 else if ∂K̂ = u · Q̂
14 and ∃k∗ with K,Q ∈ Bk∗

15 Bk∗ ← Bk∗ \ {K}
16 Que ← cb(Q)
17 g(Q)← − g(K)

κ(K,Q)
18 if dimQ = dimA
19 updateGradientPath(Q)
20 end if
21 Que ← cb(Q)
22 Bk∗ ← Bk∗ \ {Q}
23 end if
24 end while
25 end while
26 end for

27 return
{
Ak
}K
1

As the algorithm picks and excises critical cellsA, it
updates the gradient paths of cells incb(A) and enqueues
those cells to check for elementary coreduction pairs that
may have been created as a result of the excision. Note that
while the critical cells are chosen in order of increasingk,
there is no restriction on thek∗ corresponding toBk∗ from
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which the coreduction pairs are removed. Therefore, our
algorithm may remove coreduction pairs from later frames
when the critical elements are being picked from earlier
frames.

3.3. Implementation

An implementation of our main algorithmMorseReduce
in C++ will be made available soon. The cost of keeping
the gradient path chains in memory is somewhat alleviated
if we observe that these chains may be safely deleted from
each removed pair (K,Q). In fact, g(K) is never required
after line17, andg(Q) can be removed from memory once
it has been used to feed the gradient paths of its remaining
coboundaries viaUpdateGradientPath in line 19.

The algorithm can be iterated as long as there are unit-
incident cellsA, A′ with the samek-index in the reduced
persistence complexM. That is, the output of the algo-
rithm in its first run may be used as input for its next run
and so on until the number of cell pairs removed is zero, at
which point the output persistence complex can be fed into
the algorithm from [13].

3.4. Results

We demonstrate our results on cubical grids (C), sim-
plicial complexes (S) and Vietoris-Rips (V) type simpli-
cial complexes. Most cubical complexes come from sub-
level sets of finite element Cahn-Hilliard simulations and
the simplicial complex arises from brain imaging data.
The Vietoris-Rips complexes come from experimental fluid
flow data. Our largest data set is a movie (M) involving
35 frames, each comprising about 160,000 3 dimensional
cubes. All computations were performed on an Intel Core
i5 machine with 32 GB of available RAM. The compari-
son is with the standard algorithm for computing persistent
homology as found in [13] which we will denoteSP. Our
algorithm from section 3.2 is denotedMR. Further compar-
isons with other algorithms will be provided later.

The following table demonstrates the extent of reduc-
tions performed and the time taken. In case of the
MorseReduce algorithm, the time taken is the sum of the
time required to reduce the complex and the time required
to compute the homology of the reduced complex.

Type Sz Red. Sz SP MR

C [16;2] 26.12 k 2.35 k 19 s 0.9 s
C [17;2] 1.05 M 11.89 k 13,442 s 7.3 s
S [50;5] 37.86 k 7.13 k 2,983 s 4.8 s
V [99;3] 29.5 k 8.76 k 2,866 s 1.3 s
V [100;2] 2.34 M 86.33 k 1,277 s 7.1 s
M [35;3] 54 M 323 DNF 543 s

The numbers in brackets indicate the largest indexK of

each persistence complex
{
Xk

1

}K
1

followed by the top di-
mension of cells in the complex. DNF indicates that the
algorithm failed to terminate because it ran out of memory.
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