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Abstract—In this paper, we propose a simple spiking
oscillator which consists of 2-D linear sub-circuit, 1-D lin-
ear sub-circuit and instantaneous switchings. The spiking
oscillator behaves chaotic motions and generates various
spike trains. We provide the rigorous analysis of the non-
linear phenomena including hyperchaos generation. The
dynamics of the system is governed by 2-D piecewise lin-
ear return map, therefore, the rigorous analysis can be per-
formed. We provide the 2-D return map to consider param-
eter conditions for generation of various spike trains and
the stability analysis of the observed phenomena.

1. Introduction

Synthesis and analysis of simple chaotic oscillators is a
fundamental and interesting problem. The chaotic spiking
oscillators (abbr. CSO) have been studied in several inter-
esting works [1]-[3]. CSOs are closely related to resonant-
and-fire neuron models [4]. CSOs are included in hybrid
dynamical systems with various nonlinear phenomena and
its coupled systems can be developed into efficient applica-
tions of neural networks [5]. The simple circuit implemen-
tation and the rigorous analysis of CSOs are important.

This paper consider a three dimensional CSO which con-
sists of 2-D linear sub-circuit, 1-D linear sub-circuit and in-
stantaneous switchings. The spiking oscillator behaves hy-
perchaotic motions and generates various spike trains. The
basic concept for synthesis of the system is based on the
previous works of 2-D and 1-D chaotic spiking oscillators
in [6][7]. In these works, we provide that the dynamics of
the CSOs is governed by 1-D piecewise linear return map.
The piecewise linear map might enable us to perform the
rigorous proof of chaos generation and and some remark-
able analysis.

In this paper, we synthesize CSO whose dynamics is de-
scribed by 2-D and 1-D linear equations connected to each
other the instantaneous switching. Hence the system dy-
namics is formulated by 3-D linear equations with jump
mechanism. And we show the system dynamics can be
reduced to that of a 2-D return map that is non-invertible
and is exactly piecewise linear. The 2-D return map can
be described explicitly. Using the return map, we give a
theoretical evidence for hyperchaos generation, where we
define the hyperchaos as an attractor whose 2-D return map
is stretching in almost all directions. First, we introduce a
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Figure 1: 2-D chaotic spiking oscillator.

2-D spiking oscillator[7] as the basic chaotic system. Sec-
ond, an 1-D spiking oscillator[6] is also shown, and finally
we propose the coupled spiking oscillator with 3-D dynam-
ics.

2. Two dimensional spiking oscillator

2.1. Circuit and dynamics

Figure 1 shows the circuit model of the 2-D chaotic spik-
ing oscillator. When S is opened, the circuit dynamics is
described by ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1
dv1

dt
C2

dv2

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠=
(

0 g1

−g2 g2

)(
v1

v2

)
+

(
0
I

)
, (1)

where I is a constant current. Using the following dimen-
sionless variables and parameters

τ =

√
g1g2

C1C2
t, x =

g2

I
v1,

y =
g2

I

√
C2g1

C1g2
v2, 2δ =

√
C1g2

C2g1
,

(2)

Equation (1) is transformed into{
ẋ = y,
ẏ = 2δy − x + 1,

(3)
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Figure 2: Behavior of Trajectories on the phase space and
a typical chaos attractor. (δ � 0.11)

where ”·” represents the derivative of τ. Here, we assume
the following parameter condition:

0 < δ < 1. (4)

In this parameter range, Equation (3) has unstable complex
characteristic roots δ± jω, where ω =

√
1 − δ2. The trajec-

tory on the phase space moves around the equilibrium point
(1, 0) divergently and it must reach to the fourth quadrant
on the half line lTh = {(x, y)|x < 0, y = 0} as shown in the
left figure of Fig. 2.

In this circuit in Fig. 1, M.M. is a monostable multivi-
brator which outputs pulse signals to close the switch S and
to open S̄ instantaneously. Two comparators detect the im-
pulsive switching condition. If v1 ≥ 0 or v2 ≤ 0, the switch
S is opened and S̄ is closed. For the meantime, the voltage
v1 is stored in CC1. If v1 < 0 and v2 > 0, then M.M. is trig-
gered by the pair of comparators, and the switch S is closed
and S̄ is opened instantaneously. At that time, the voltage
v1 is reset to the inverse voltage −v1 instantaneously, by
holding the continuity property of v2(t), that is,

[v1(t+), v2(t+)]T = [−v1(t), v2(t)]T

for v1(t) < 0 and v2(t) > 0,
(5)

where t+ ≡ limε→0{t + ε}.
Because the parameter condition (4), the trajectory must

reach lv ≡ {(v1, v2)|v1 < 0, v2 = 0} when the switchings
occur. Namely, the normalized trajectory must hit lTh, and
jumps from (x(Tn), 0) to (−x(T+n ), 0) as shown in the left
figure of Fig. 2, where Tn is the n-th switching moments.

Consequently, Eqn. (1) and (5) with the condition (4) are
transformed into{

ẋ = y,
ẏ = 2δy − x + 1,

for S = off,

[x(τ+), y(τ+)]T = [−x(τ), 0]T

for x(τ) < 0 and y(τ) = 0,
(0 < δ < 1).

(6)

Now the system is characterized by only one parameter δ.
The right figure of Fig. 2 shows a typical chaotic attractor
with δ � 0.11.
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Figure 3: Chaotic return maps. (left: A = 1.8(δ � 0.09),
right: A→ 2(δ � 0.11)).

2.2. Analysis

The exact piecewise solution of Eqn. (18) for S =off is
derived as follows:

x(τ) = eδτ
{
{x(0) − 1} cosωτ

+ 1
ω
{y(0) − δx(0) + δ} sinωτ

}
+ 1.

(7)

Here, let us focus on a trajectory starting from origin at
τ = 0 (see Fig. 2). The trajectory rotates divergently
around the equilibrium point (1, 0) and reaches the switch-
ing threshold at τ = 2π

ω
. A x−coordinate of the reaching

point is obtained as −e
2πδ
ω + 1, by substituting x(0) = 0

and τ = 2π
ω

into (7). Here we define A ≡ e
2πδ
ω > 1 and

l ≡ {(x, y)| − 1 < x < 0, y = 0}. And we consider the
case of −A + 1 > −1, In this case, the trajectory starting
from l must jump instantaneously to the symmetric point
of the origin, the trajectory rotates k−times (k = 1, 2, 3, · · ·)
around the equilibrium point and it must return to l after
2kπ
ω

. We henceforth consider the following parameter range
with (4):

1 < A < 2. (8)

If we choose l as Poincaré-section, we can define one di-
mensional return map f from l to itself. Letting (x(Tn), 0)
be the starting point, (x(Tn+1), 0) be the return point as
shown in left figure of Fig. 2. And letting any points on
l be represented by its x-coordinate, f is defined by

f : l �→ l, xn+1 = f (xn), (9)

where we rewrite xn = x(Tn).
Substituting x(0) = −xn and τ = 2kπ

ω
into the solution

(7), we obtain an explicit expression for the function f :

f (xn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−A(xn + 1) + 1
for 1

A − 1 < xn ≤ 0,
...

−Ak(xn + 1) + 1
for 1

Ak − 1 < xn ≤ 1
Ak−1 − 1,

...
(k = 1, 2, 3, · · ·),

(10)
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Figure 4: 1-D chaotic spiking oscillator.

where each border of the piecewise maps, Thk =
1
Ak − 1,

are derived by solving 0 = −Ak(Thk+1)+1. Typical return
map f are shown in Fig. 4. In this figure, k-th branch from
the right corresponds to a trajectory with a k turn spiral on
the phase space.

Here, we give the proof for chaos generation of this sys-
tem. From condition (8), | ∂ f

∂xn
| > 1 is satisfied without dis-

continuous points and f (l) ⊂ l is obvious, hence f exhibits
chaos.

3. One dimensional spiking oscillator

Figure 4 shows the circuit model of the 1-D chaotic spik-
ing oscillator. In a similar way to Sec. 2, We can describe
the circuit dynamics when S is opened.

C3
dv3

dt
= g3v3 + Ik. (11)

where Ik is a constant current. Using the following dimen-
sionless variables and parameters

τ =
1
T

t, z =
g3

Ik
v3, λ =

g3T
C3
, (12)

Equation (11) is transformed into

ż = λ(z + 1). (13)

Here, we assume the following parameter condition:

0 < λ < ln 2. (14)

The switching mechanism is similar to 2-D system. Where
the switching operation depend on the external pulse train
with period T . When S is closed, the voltage v3 is reset to
the inverse voltage −v3 instantaneously.

v3(t+) = −v3(t) for v3(t) > 0 and t = kT
(k = 1, 2, 3, · · ·), (15)

Because the parameter condition (14), If the initial con-
dition is set as −1 < z(0) < 0, z(1) must exists on (−1, 1).
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Figure 5: Chaotic return maps and time domain waveform.
( a→ 2(λ � 0.69)).

Consequently, Eqn. (11) and (15) with the condition (??)
are transformed into

ż = λ(z + 1), for S = off,

z(τ+) = −z(τ) for z(τ) > 0 and τ = k,
(0 < λ < ln 2).

(16)

Here, we can define one dimensional return map g in
the similar way to Sec. 2. Let zn be the state at the n-th
switching moment. Then the relationship zn+1 = g(zn) can
be obtained as the following an explicit expression:

g(zn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(−zn + 1) − 1
for 0 < zk ≤ 1 − 1

B ,
...

Bk(−zn + 1) + 1
for 1 − 1

Bk−1 < zn ≤ 1 − 1
Bk ,

...
(k = 1, 2, 3, · · ·),

(17)

where B = eλ. Typical return map g and the corresponding
are time-domain waveform are shown in Fig. 5. In this
figure,

The proof for chaos generation of this system can be
given irrefutable, because | ∂g

∂zn
| > 1 is satisfied without dis-

continuous points and g(l0) ⊂ l0 (l0 = {0, 1}) is obvious in
the condition (14).

4. A pulse-coupled spiking oscillator

Figure 6 shows the circuit model of the 3-D chaotic spik-
ing oscillator. The normalized dynamics can be represented
as the followings in a similar way to Sec. 2 and 3.⎧⎪⎪⎪⎨⎪⎪⎪⎩

ẋ = y,
ẏ = 2δy − x + 1,
ż = λz + K,

for S = off,

[x(τ+), y(τ+), z(τ+)]T = [−x(τ), 0,−z(τ)]T

for x(τ) < z(τ) and y(τ) = 0,
(0 < δ < 1).

(18)

Now the system is characterized by three parameter δ, λ
and K. The Fig. 7 shows a typical chaotic attractor and
time-domain waveform. Also, the return map can be de-
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Figure 6: 3-D chaotic spiking oscillator.

rived explicitly. Let [xn, zn]T be the state at the n-th switch-
ing moment. Then the two dimensional return map form
[xn, zn]T to [xn+, zn+]T can be obtained as the followings

[
xn+1

zn+1

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(−a)(−xn − 1) + 1

b(−zn + c) − c

]
for

[
xn

zn

]
∈ S 1

...[
(−a)k(−xn − 1) + 1

bk(−zn + c) − c

]
for

[
xn

zn

]
∈ S k

...
(k = 1, 2, 3, · · ·),

(19)

S 0 = {(x, z)|z > x},
S 1 = S 0 ∩ {(x, z)|z < 1

b {(−a)(x + 1) − (c + 1)} + 1}
S 2 = S 0 ∩ S 1

∩{(x, z)|z < 1
b2 {(−a)2(x + 1) − (c + 1)} + 1}
...

S k = S 0 ∩ S 1 ∩ S 2 ∩ · · · ∩ S k−1

∩{(x, z)|z < 1
bk {(−a)k(x + 1) − (c + 1)} + 1}
...

weber a = e
δπ
ω , b = e

λπ
ω and c = K

λ
. We can give the proof

for hyperchaos generation from this return map. | ∂xn+1
∂xn
| > 1

and | ∂zn+1
∂zn
| > 1 are guaranteed : the return map is stretch-

ing almost everywhere on S 0. Therefore in order to prove
hyperchaos generation, it is sufficient that the map has an
attractor on S 0. The sufficient condition have been reported
in [8].
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Figure 7: Chaotic return maps and time domain waveform.
( δ = 0.05, λ = 0.05,K = 0.5).

5. Conclusion

This paper considered a simple spiking oscillator which
consists of 2-D linear sub-circuit, 1-D linear sub-circuit and
instantaneous switchings. The spiking oscillator behaves
hyperchaotic motions and generates various spike trains.
The dynamics of the system is governed by 2-D piecewise
linear return map, therefore, the rigorous analysis can be
performed. Some analytical results by using the 2-D return
map will provided in the near future.
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