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Abstract—In this paper, we propose a simple spiking
oscillator which consists of 2-D linear sub-circuit, 1-D lin-
ear sub-circuit and instantaneous switchings. The spiking
oscillator behaves chaotic motions and generates various
spike trains. We provide the rigorous analysis of the non-
linear phenomena including hyperchaos generation. The
dynamics of the system is governed by 2-D piecewise lin-
ear return map, therefore, the rigorous analysis can be per-
formed. We provide the 2-D return map to consider param-
eter conditions for generation of various spike trains and
the stability analysis of the observed phenomena.

1. Introduction

Synthesis and analysis of simple chaotic oscillators is a
fundamental and interesting problem. The chaotic spiking
oscillators (abbr. CSO) have been studied in several inter-
esting works [1]-[3]. CSOs are closely related to resonant-
and-fire neuron models [4]. CSOs are included in hybrid
dynamical systems with various nonlinear phenomena and
its coupled systems can be developed into efficient applica-
tions of neural networks [5]. The simple circuit implemen-
tation and the rigorous analysis of CSOs are important.

This paper consider a three dimensional CSO which con-
sists of 2-D linear sub-circuit, 1-D linear sub-circuit and in-
stantaneous switchings. The spiking oscillator behaves hy-
perchaotic motions and generates various spike trains. The
basic concept for synthesis of the system is based on the
previous works of 2-D and 1-D chaotic spiking oscillators
in [6][7]. In these works, we provide that the dynamics of
the CSOs is governed by 1-D piecewise linear return map.
The piecewise linear map might enable us to perform the
rigorous proof of chaos generation and and some remark-
able analysis.

In this paper, we synthesize CSO whose dynamics is de-
scribed by 2-D and 1-D linear equations connected to each
other the instantaneous switching. Hence the system dy-
namics is formulated by 3-D linear equations with jump
mechanism. And we show the system dynamics can be
reduced to that of a 2-D return map that is non-invertible
and is exactly piecewise linear. The 2-D return map can
be described explicitly. Using the return map, we give a
theoretical evidence for hyperchaos generation, where we
define the hyperchaos as an attractor whose 2-D return map
is stretching in almost all directions. First, we introduce a

Figure 1: 2-D chaotic spiking oscillator.

2-D spiking oscillator[7] as the basic chaotic system. Sec-
ond, an 1-D spiking oscillator[6] is also shown, and finally
we propose the coupled spiking oscillator with 3-D dynam-
ics.

2. Two dimensional spiking oscillator

2.1. Circuit and dynamics

Figure 1 shows the circuit model of the 2-D chaotic spik-
ing oscillator. When S is opened, the circuit dynamics is
described by
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where [ is a constant current. Using the following dimen-
sionless variables and parameters
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Equation (1) is transformed into

x=y,
{y=25y—x+1, 3)
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Figure 2: Behavior of Trajectories on the phase space and
a typical chaos attractor. (6 =~ 0.11)

39 99

where represents the derivative of 7. Here, we assume
the following parameter condition:

0<6<1. 4)

In this parameter range, Equation (3) has unstable complex
characteristic roots 6 + jw, where w = V1 — 62. The trajec-
tory on the phase space moves around the equilibrium point
(1, 0) divergently and it must reach to the fourth quadrant
on the half line Iy, = {(x,y)|x < 0,y = 0} as shown in the
left figure of Fig. 2.

In this circuit in Fig. 1, M.M. is a monostable multivi-
brator which outputs pulse signals to close the switch S and
to open § instantaneously. Two comparators detect the im-
pulsive switching condition. If vi > 0 or v, < 0, the switch
S is opened and S is closed. For the meantime, the voltage
vy is stored in C¢y. If vi < 0 and v, > 0O, then M. M. is trig-
gered by the pair of comparators, and the switch S is closed
and S is opened instantaneously. At that time, the voltage
v is reset to the inverse voltage —v; instantaneously, by
holding the continuity property of v,(¢), that is,

v (), vt = [=vi(0), v2(D]"

for vi(#) < 0 and v,(¢) > 0, )

where * = lim,_o{t + &}.

Because the parameter condition (4), the trajectory must
reach [, = {(vi,v)lvi < 0,v, = 0} when the switchings
occur. Namely, the normalized trajectory must hit /7, and
jumps from (x(7),0) to (—x(T,"),0) as shown in the left
figure of Fig. 2, where T, is the n-th switching moments.

Consequently, Eqn. (1) and (5) with the condition (4) are
transformed into

xX=DY,
§ =28y —x+1, for S = off,
[x(7), ()] = [-x(7), 01" (6)
for x(1) < 0 and y(1) = 0,
O<o6<1).

Now the system is characterized by only one parameter 6.
The right figure of Fig. 2 shows a typical chaotic attractor
with § ~ 0.11.

n+l

Figure 3: Chaotic return maps. (left: A = 1.8(6 = 0.09),
right: A — 2(6 ~ 0.11)).

2.2. Analysis

The exact piecewise solution of Eqn. (18) for S =off is
derived as follows:

x(t) = e‘”{{x(O) — 1}coswr

1 . (7N
+L{y(0) - 6x(0) + 6} sin w‘r} + 1.

Here, let us focus on a trajectory starting from origin at
T = 0 (see Fig. 2). The trajectory rotates divergently
around the equilibrium point (1, 0) and reaches the switch-

ing threshold at T = Z. A x—coordinate of the reaching

point is obtained as e+ 1, by substituting x(0) = 0
and T = %” into (7). Here we define A = ev > 1and
[ ={(x,yl-1< x <0,y = 0}. And we consider the
case of —A + 1 > —1, In this case, the trajectory starting
from / must jump instantaneously to the symmetric point
of the origin, the trajectory rotates k—times (k = 1,2,3,--)
around the equilibrium point and it must return to [ after
2"7". We henceforth consider the following parameter range
with (4):

1<A<2. ®)

If we choose [ as Poincaré-section, we can define one di-
mensional return map f from [ to itself. Letting (x(7},),0)
be the starting point, (x(7,+1),0) be the return point as
shown in left figure of Fig. 2. And letting any points on
I be represented by its x-coordinate, f is defined by

Xne1 = f(Xn), 9

where we rewrite x, = x(T},).
Substituting x(0) = —x, and 7 = 2"7” into the solution
(7), we obtain an explicit expression for the function f:

file,

“Alx,+ 1) +1
for%—l<x,,§0,

—AF(x, + D+ 1
for 4r — 1 < x, <

fG) = (10)

|
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(k=1,2,3,--),
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Periodic Train with period 7'

Figure 4: 1-D chaotic spiking oscillator.

where each border of the piecewise maps, Th; = ﬁ -1,
are derived by solving 0 = —A¥(Thy + 1) + 1. Typical return
map f are shown in Fig. 4. In this figure, k-th branch from
the right corresponds to a trajectory with a k turn spiral on
the phase space.

Here, we give the proof for chaos generation of this sys-
tem. From condition (8), |60_)i| > 1 is satisfied without dis-
continuous points and f(/) C [ is obvious, hence f exhibits
chaos.

3. One dimensional spiking oscillator

Figure 4 shows the circuit model of the 1-D chaotic spik-
ing oscillator. In a similar way to Sec. 2, We can describe
the circuit dynamics when S is opened.

d
C3£ = g3v3 + Iy.

7 1)

where [ is a constant current. Using the following dimen-
sionless variables and parameters

T= %t, z= ‘i—Zm, A= %, (12)
Equation (11) is transformed into
Z=Az+1). (13)
Here, we assume the following parameter condition:
0<A<In2. 14)

The switching mechanism is similar to 2-D system. Where
the switching operation depend on the external pulse train
with period 7. When S is closed, the voltage v; is reset to
the inverse voltage —v3 instantaneously.

for v3(¥) > 0 and ¢t = kT
(k: 1,2a39".)9

v3(t") = —v3(0) 15)

Because the parameter condition (14), If the initial con-
dition is set as —1 < z(0) < 0, z(1) must exists on (-1, 1).

]
Znn /) /

Figure 5: Chaotic return maps and time domain waveform.
(a - 2(1~0.69)).

Consequently, Eqn. (11) and (15) with the condition (2?)
are transformed into

z=A(z+ 1), for S = off,
2(th) = —z(7) for z(t) > 0 and 7 = k, (16)
0<A<In2).

Here, we can define one dimensional return map g in
the similar way to Sec. 2. Let z, be the state at the n-th
switching moment. Then the relationship z,+; = g(z,) can
be obtained as the following an explicit expression:

B(—z,+ 1) -1
for0 <z <1-1,

Bf(—z, + 1) + 1
forl—%<zn<l—#,

8(zn) = A7)

(k: 15253"'.)9

where B = e'. Typical return map g and the corresponding
are time-domain waveform are shown in Fig. 5. In this
figure,

The proof for chaos generation of this system can be
given irrefutable, because |%| > 1 is satisfied without dis-
continuous points and g(ly) C Iy (p = {0, 1}) is obvious in
the condition (14).

4. A pulse-coupled spiking oscillator

Figure 6 shows the circuit model of the 3-D chaotic spik-
ing oscillator. The normalized dynamics can be represented
as the followings in a similar way to Sec. 2 and 3.

x=y,
{ y=20y—-x+1,
Z=Az+K,
[x(r*), y(r*), 2t )" = [=x(7), 0, —z(1)]"
for x(7) < z(r) and y(1) = 0,

for S = off,
(18)

O<ds<.

Now the system is characterized by three parameter 9, A
and K. The Fig. 7 shows a typical chaotic attractor and
time-domain waveform. Also, the return map can be de-
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Figure 6: 3-D chaotic spiking oscillator.

rived explicitly. Let [x,,, z,]7 be the state at the n-th switch-
ing moment. Then the two dimensional return map form
(%4, 2017 t0 [Xn4, 20+ ]" can be obtained as the followings

[ (_a)(_xn - 1) +1

b(-z,+¢c)—c

for[x” }eSl
z

-1

X,
fi " S
or |: 2 ] [SIVYA

(k: 1’2’37.'.)’

[ el }= [ (—af(xy = D)+ 1

ntl b (=z, +¢) — ¢

19)

So ={(x, 2|z > x},
S1=80N{(x2l < H{-a)x+ 1) = (c+ D} + 1}
S,=80NnS8;

N(x, Dz < B {(—a)*(x+ 1) = (c + D} + 1}

Sk=SomS_mS_2rw.~-mﬁ
N(x, DIz < Fl(—af'(x+ D = (c+ D} + 1)

on A .
webera = ev,b =ewv and c = % We can give the proof
[>1

0Xps1

for hyperchaos generation from this return map. |~

and |‘9§'—j“| > 1 are guaranteed : the return map is stretch-
ing almost everywhere on S¢. Therefore in order to prove
hyperchaos generation, it is sufficient that the map has an
attractor on So. The sufficient condition have been reported
in [8].

X
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Figure 7: Chaotic return maps and time domain waveform.
(6 =0.05,24=0.05K =0.5).

5. Conclusion

This paper considered a simple spiking oscillator which
consists of 2-D linear sub-circuit, 1-D linear sub-circuit and
instantaneous switchings. The spiking oscillator behaves
hyperchaotic motions and generates various spike trains.
The dynamics of the system is governed by 2-D piecewise
linear return map, therefore, the rigorous analysis can be
performed. Some analytical results by using the 2-D return
map will provided in the near future.
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