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Abstract—In this paper, pulse-coupled oscillators with
a refractory period and frequency distribution are investi-
gated experimentally. The experimental results show that
the stability condition of globally synchronization which
was derived analytically in [Konishi and Kokame, 2008]
is valid even for the experimental situations. In the case
that the coupled oscillators have wide frequency distribu-
tion, the experimental results agree well with the analytical
results. On the contrary, for narrow frequency distribution,
there is a somewhat difference between the experimental
and the analytical results. Our numerical simulations show
that this difference would be reduced when the number of
oscillators becomes large.

1. Introduction

In recent years, wireless sensor networks, which consists
of a large amount of sensor nodes, have been intensively
studied in the field of information and computer engineer-
ing [1]. In wireless sensor networks, each node gathers
physical information around itself and communicates with
each other. It is well known that there are some techni-
cal problems for practical implementation of the networks.
The time synchronization of all the nodes is one of the im-
portant problems, since it plays crucial role on information
integration. To overcome this problem, many researchers
proposed the various rules [2]. Among those rules, pulse-
coupled oscillators have been considered as one of the ef-
fective schemes [3].

For wireless sensor networks, a large amount of tiny sen-
sor nodes are spatially distributed and the number of nodes
changes from hour to hour. In such a situation, the fol-
lowing three specifications must be considered. First, each
node is autonomous and they do not have an external elec-
tric power-supply. To extend its battery life, its power con-
sumption must be reduced. Therefore, the communication
time for each node should be shortened as much as possi-
ble. Second, since there are many sensor nodes in a net-
work, they have to use standard popular-priced electronic
devices in order to reduce hardware costs. Finally, time
synchronization should be robust even if the number of sen-
sor nodes changes one after another.

Synchronization in coupled nonlinear oscillators have
been studied over many years [4, 5]. Mirollo and Stro-
gatz reported that a globally pulse-coupled oscillators ex-

hibits synchronization for almost all initial conditions [6].
Since then, this type of network has been investigated for
many situations: considering a frequency distribution [7],
a refractory period [8], a local coupled network [9], and a
transmission delay of the pulse signals [10]. In addition,
an electrical circuit for a pulse-coupled oscillator was pro-
posed [11].

For an applicative wireless sensor network, the pulse-
coupled oscillators with a refractory period and frequency
distribution, which take the three specifications into con-
sideration, have been proposed in our previous study [12].
This study analytically provides the stability condition of
global synchronization and the design for the idealized os-
cillators. However, we do not know whether our results are
still valid for real oscillators or not. In order to confirm this,
the present paper implements the pulse-coupled oscillator
circuits, which are the modified circuits proposed in [11],
and investigates their dynamics experimentally. These re-
sults are compared with the analytical results.

2. Pulse-coupled oscillators [12]

Let us consider a network of N oscillators. The phase of
i-th oscillator is denoted by ϕi(t) ∈ [0, 1] and developed by
parameter ωi ∈ [ω, 1], that is,

dϕi(t)
dt
= ωi (i = 0, 1, ...,N − 1). (1)

The upper limit of ωi is set to 1 and the lower limit of it is
set to ω ∈ (0, 1]. Let k ∈ Z+ be the number of firings in
the network. When the phase ϕi(t) reaches 1 at time tk−, the
i-th oscillator fires and broadcasts a signal to all the other
oscillators. Then, the phase ϕi(t) is immediately reset to
zero at time tk+,

ϕi(tk−) = 1 ⇒ ϕi(tk+) = 0. (2)

At the same time, j(, i)-th oscillator being active, ϕ j(tk−) ∈
[δ, 1), are forced to be reset to zero by the broadcast signal,

ϕi(tk−) = 1 and ϕ j(tk−) ∈ [δ, 1)⇒ ϕ j(tk+) = 0, ∀ j , i. (3)

On the contrary, the oscillators being sleep, ϕ j(t) ∈ [0, δ),
are not reset,

ϕi(tk−) = 1 and ϕ j(tk−) ∈ [0, δ)

⇒ ϕ j(tk+) = ϕ j(tk−), ∀ j , i. (4)
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For synchronization in these pulse-coupled oscillators, the
following two stabilities are defined.

[Local stability] Suppose that the initial conditions of all
the oscillators are

ϕi(0) ∈ [δ, 1], ∀i ∈ {0, 1, ...,N − 1}. (5)

The synchronization is said to be locally stable if all the
oscillators have been synchronized since the first fire (n =
1).

[Global stability] Suppose that the initial conditions of all
the oscillators are

ϕi(0) ∈ [0, 1], ∀i ∈ {0, 1, ...,N − 1}. (6)

The synchronization is said to be globally stable if all the
oscillators have been synchronized since n-th fire.

It is obvious that initial condition (5) is included in condi-
tion (6). The design procedure which allows us to obtain
locally stable and globally stable is given by the following
two conditions.
[Local stability condition] If the lower bound of the pa-
rameter ω is greater than or equal to the refractory period
δ,

δ ≤ ω, (7)

then the synchronization is locally stable.

[Global stability condition] If the lower bound of the pa-
rameter ω and the refractory period δ satisfy

δ ≤ g(n, ω), (8)

g(n, ω) :=


n−1√ω

1+ n−1√ω , (ω ≥ ω∗n)

ω, (ω ≤ ω∗n)
, (9)

ω∗n :=
{
ω : ω ∈ [0, 1), (1 − ω)n−1 = ωn−2

}
, (10)

then all the oscillators synchronize after at most n(≥ 2)
fires for any initial condition.

It should be noted that inequality (8) is the sufficient con-
dition of the global stability. Since the condition does not
depend on the number of oscillators N, it is valid even for
N → ∞. For small N, we may obtain the globally stable
synchronization even when inequality (8) is not satisfied.
This fact will be discussed in Section 4.

3. Oscillator circuits

This paper provides the pulse-coupled oscillator circuits
as shown in Fig. 1. The i-th oscillator circuit is governed
by the circuit equation,

dVi

dτ
=

λi(VC − Vi), kTi ≤ τ < kTi + tλi

−γiVi, kTi + tλi ≤ τ < (k + 1)Ti
, (11)

where

λi :=
1

(Rλ + Rγ)Ci
, γi :=

1
RγCi

,

tλi := (Rλ + Rγ)Ci ln 2, tγi := RγCi ln 2,

Ti := tλi + tγi = (Rλ + 2Rγ)Ci ln 2.

The variable Vi is the voltage across capacitor Ci of the i-th
circuit. τ is the actual time. VC is the power supply voltage.
The period Ti equals the sum of the charging period tλi and
the discharging period tγi . These periods depend on the re-
sistors Rλ = 100 [kΩ] and Rγ = 3 [kΩ]. The comparator
LM311 operates to switch the two states, sleep and active.
The bias voltage VDD of the comparator corresponds to the
refractory period δ in oscillators (1). Further, due to the op-
eration of NE555, the voltage Vi wanders within the range
Vi ∈ [Vc/3, 2Vc/3] (see Fig. 2).

The six (N = 6) oscillator circuits, which are globally
coupled by photo couplers, are implemented as shown in
Fig. 1. The circuits are made up of standard popular-
priced electronic devices. In general, although resistors
have high degree of accuracy, capacitors have an error
margin of tens of percents. The errors in capacitors in-
evitably cause the frequency distribution. Thus, in order to
take the distribution into consideration, we explicitly deal
with the error margin of capacitors. Throughout this paper,
all of the capacitances are assumed to be within a range,
Ci ∈ [Cmin,Cmax] for any i.

4. Experimental results

The previous paper [12] analytically provided the global
stability condition (8) ∼ (10), which depends on the refrac-
tory period δ and the error range ω. The present paper shall
confirm the analytical results by circuit experiments with
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Figure 1: Pulse-coupled oscillator circuits.
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Figure 2: Relation between the voltage Vi and the phase ϕi.

the following parameters:

VC = 9 [V],

Cmin/Cmax ∈ {0.108, 0.215, 0.329, 0.438, 0.516,

0.583, 0.666, 0.757, 0.841}.

The phase of the i-th oscillator, ϕi(t), corresponds to the
voltage Vi of the i-th circuit. Their differences are sum-
marized as follows. (i) Vi decreases along the discharg-
ing curve; ϕi is immediately reset to zero. (ii) Vi increases
along the charging curve; ϕi increases linearly. The resis-
tors governing the charging and discharging curves are set
as Rγ ≪ Rλ. Thus, the discharging period is very short
compared with the charging one; then, it can be ignored.
As a result, we can leave difference (i) out of consideration
(see Fig. 2). Furthermore, we notice that difference (ii) can
be also ignored by the rescaling,

ϕi :=

{
ln

2VC

3(VC − Vi)

}
/ ln 2, ωi :=

Cmin

Ci
,

t :=
τ

RλCmin ln 2
, ω :=

Cmin

Cmax
,

δ :=

{
ln

2VC

3(VC − VDD)

}
/ ln 2.

This rescaling indicates that circuits (11) are transformed
into oscillators (1). Therefore, circuits (11) are dynami-
cally equivalent to oscillators (1). From the above rescal-
ing, global stability condition (8) ∼ (10) can be also trans-
formed into the following condition:

VDD ≤ VDD(n,Cmin/Cmax), (12)

where the upper limit of VDD is denoted by

VDD(n,Cmin/Cmax) := VC

(
1 − 2

3
e−g

(
n, Cmin

Cmax

)
ln 2

)
. (13)

Figure 3 shows that the global stability region on the
Cmin/Cmax - VDD plane. The solid line represents the
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Figure 3: Global stability region in the Cmin/Cmax - VDD

space.

boundary of globally stable synchronization, which is ob-
tained experimentally. When VDD is set over the boundary
(e.g., A in Fig. 3), the six circuits are not synchronized.
Figure 4(a) shows the voltage Vi of the circuits whose pa-
rameters are set to point A in Fig. 3. It can be seen that
the circuits are not synchronized. On the contrary, for VDD

under the boundary (e.g., B and C in Fig. 3), all of the
six circuits are synchronized even when various external
disturbances are applied to the circuits (see Figs. 4(b) and
4(c)).

The dashed line in Fig. 3 represents the analytical
boundary of globally stable synchronization, VDD, given
by Eq. (13) with n = 7. This line indicates that if VDD

is set under the line, an arbitrary number of circuits are
synchronized after at most seven fires. From the analytical
results, we notice the following two facts: 1) Coupled cir-
cuits at points A and B in Fig. 3 do not satisfy the global
stability condition; 2) Coupled circuits at point C satisfy
the global stability condition. There is a somewhat differ-
ence between the solid line and the dashed line for the range
Cmin/Cmax > 0.5. The difference is supposed to be caused
by the following reason: although the solid line is based on
our experiments of the six circuits, the dashed line is the
boundary of the sufficient condition which does not depend
on the number of circuits. Thus, our experimental results
do not contradict the above facts.

In order to investigate the relation between the bound-
ary and the number of circuits, we numerically estimate
the boundary of globally stable synchronization on com-
puter simulations. Figure 5 shows the boundaries with
N = 3, 9, 20. As can be seen from this figure, the bound-
aries converge on the analytical one when N becomes large.
Then, we notice that the solid line in Fig. 3 would converge
on the dashed line when the number of circuits becomes
large.

Inequality (12) is the sufficient condition of the globally
stable synchronization, which does not depend on the num-
ber of circuits. Since the condition is valid for any N > 0, it
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(a) Point A: VDD = 5.40 [V]

(b) Point B: VDD = 4.90 [V]

(c) Point C: VDD = 4.50 [V]
Figure 4: Time series data of voltage Vi (Cmin/Cmax =

0.756).

is conservative for the small number of oscillators. In fact,
for small N, we numerically obtain the globally stable syn-
chronization even if inequality (8) is not satisfied (see Fig.
5).

5. Conclusion

In this paper, the pulse-coupled oscillators with a re-
fractory period and frequency distribution have been in-
vestigated experimentally. The experimental results have
shown that the stability condition of global synchronization
is valid even for the experimental situations.
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Figure 5: Boundaries of globally stable synchronization
numerically estimated with N = 3, 9, 20.
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