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Abstract—Recently, the so-called micro-Phasor Mea-
surement Unit (PMU) with high-resolution capability has
been expected as a new data-driven technology of analy-
sis and control of the future power distribution system. In
this report, we analyze non-stationary time-series data on
voltage-phase differences derived by multiple micro-PMUs
for the campus distribution network in Osaka Metropolitan
University, Japan. The analysis is based on a short-term
Koopman mode decomposition that is based on eigenval-
ues of the Koopman operator for a nonlinear time-variant
system (as a latent model of dynamics of the distribution
system). We visualize that dominant Koopman modes and
associated frequencies embedded in the time-series change
as time goes on.

1. Introduction

The utilization of Phasor Measurement Units (PMUs) in
power distribution systems has been recently investigated
(see, e.g., [1])．This is because state monitoring and oper-
ation of power distribution systems are expected to become
more complicated due to the high penetration of renewable
energy sources and electric vehicles. The so-called micro-
PMU (µPMU) is capable of measuring the phase differ-
ence of AC voltage at multiple points in a distribution sys-
tem and deriving time-stamped data on the phase difference
with high accuracy [2, 3]．

We reported our project on real-field measurement
and data analysis for the campus distribution network in
Nakamozu campus, Osaka Metropolitan University, Japan
[4, 5]．In the measurement, the four µPMUs are placed in
the low-voltage distribution system in order for us to col-
lect data on the amplitude, frequency, and phase of three-
phase AC voltage [4]．In the data analysis, we use the so-
called Koopman Mode Decomposition (KMD) [6], which
is based on Koopman operator theory of nonlinear dynam-
ical systems [7]. KMD is a novel method for decompos-
ing time-series data representing complex dynamics into
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Fig. 1: Four measurement locations of µPMUs for mea-
surement of distribution grid in Nakamozu campus, Osaka
Metropolitan University, Japan

modes with a single frequency (called Koopman modes).
The purpose of this report, following [4, 5], is to intro-

duce a data analysis for non-stationary dynamics of phase
differences for the campus distribution grid in terms of
KMD. Generally speaking, distribution systems are di-
rectly affected by load variations compared to wide-area
transmission systems because the electrical distance be-
tween distribution system and load is very short. Because
such load variations are typically non-periodic, it becomes
natural to explicitly consider time-variant characteristics in
the KMD. Koopman operators for time-variant dynamical
systems are discussed in [8], and the Dynamic Mode De-
composition (DMD [9]; as a numerical algorithm of KMD)
for actuated dynamics are also discussed in [10, 11, 12]. In
this report, we show time-series data of the voltage-phase
differences derived by the four µPMUs in Sect. 2. Then, we
introduce an idea of short-term KMD for nonlinear time-
variant systems based on [8] in Sect. 3 and apply it to the
time-series data of Sect. 2. Conclusions of this report are
presented in Sect. 4. Note that a preliminary version of
this report is in non-reviewed conference proceeding [13]
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Fig. 2: Time-series data of voltage-phase differences on
October 7, 2020 in JST

in Japan.

2. µPMU data

Figure 1 shows an overview of measurement of the
campus distribution grid in Nakamozu campus of Osaka
Metropolitan University, Japan. The four µPMUs are con-
nected to 3-phase 220 V terminals at four places (Lab,
Electrical room, Cubicle, and Transformer Substation). At
the four locations, time-stamped data on AC voltage am-
plitude, frequency, and phase angle are derived and sent to
a local data server. In this report, we focus on the differ-
ence of voltage-phases for our data analysis. Fig. 2 shows
time-series data of the three phase differences during five
minutes starting from 11:45 on October 7, 2020 in JST. The
horizontal axis of the figure is the time, and the vertical axis
is the three phase differences with respect to Cubicle: Lab,
Electrical room, and Transformer Sub. Note that to plot the
data, all the time-averaged components were removed. The
sampling interval is one second. In the time-series data, ex-
citations of multiple frequency components and their time
variations, which might be due to load changes, are ob-
served.

3. Method and data analysis

3.1. Koopman operator for time-variant systems

First, we introduce a Koopman operator for time-variant
systems. For this, we consider the following nonlinear
time-variant dynamical system evolving in n-dimensional
Euclidean space Rn:

ẋ = F(x, t), x ∈ Rn, t ∈ R, (1)

where x is the state variable and t is the continuous time.
F is a nonlinear vector field, which corresponds to a latent
dynamical model (but unknown) for the target campus dis-
tribution grid in this report. We denote the solution of the
above equation passing through state x0 at initial time t0 by

φ(t,t0)(x0)（t ≥ t0) (clearly, φ(t0,t0)(x0) = x0). In addition, we
denote the scalar-valued function defined on the state space
Rn by f , which we call the observable. The linear space
consisting of all the observables is denoted by F . By using
these notations, the Koopman operator for the time-variant
system (1) is introduced as the following composition [8]:

U(t0,t) f := f ◦ φ(t,t0), f ∈ F . (2)

This U(t0,t) : F → F is a linear operator that possesses the
two parameters related to time, t, t0（t ≥ t0）. In addition,
U(t0,t0) is the identity operator on F and satisfies the so-
called co-cycle property U(t0,t2) = U(t0,t1)U(t1,t2) for t2 ≥ t1 ≥
t0.

The eigenvalue of the Koopman operator U(t,t0) is dis-
cussed in [8]. The Koopman eigenvalue, denoted by
µ(t0, t), possesses the two parameters t, t0. The µ(t0, t) and
associated Koopman eigenfucntion ϕµ(t0,t) are formally in-
troduced as follows:

U(t0,t)ϕµ(t0,t) = eµ(t0,t)ϕµ(t0,t), ϕµ(t0,t) , 0. (3)

If (1) is a linear system, then an analytical treatment of Eq.
(3) based on the fundamental solution matrix is given in
[8].

3.2. Short-term Koopman mode decomposition

In this report, we will approximate Eq. (3) in a similar
manner as [14]. For this, let h = t − t0 be a small positive
constant and let us assume that the eigenvalue µ(t0, t0 + h)
can be expanded with respect to h like

µ(t0, t0 + h) = λ(t0)h + h.o.t., (4)

where λ(t0) is the expansion coefficient of the first-order
term, and the high-order term (h.o.t.) includes at least h2.
The operator U(t0,t0) is the identity, hence the term indepen-
dent of h does not appear on the right-hand side of Eq. (4).
Now, from Eqs. (3) and (4), we introduce the following
approximation of Eq. (3) as

U(t0,t0+h)ϕλ(t0) = eλ
(t0)hϕλ(t0) , h ≥ 0, (5)

where ϕλ(t0) can be introduced in the same manner as λ(t0)

through the expansion. It is supposed that there exists
a positive h∗ such that this approximation is held for all
h ∈ [0, h∗) . By regarding the initial time t0 as a parame-
ter, Eq. (5) is almost the same as the definition of Koop-
man eigenvalue and eigenfunction for time-invariant sys-
tems [15]. Then, by choosing T from (0, h∗) and using
sampled data of x(t) in the finite interval [t0, t0 + T ] while
shifting t0 in forward time, it is possible to estimate approx-
imations of λ(t0) and associated modes by DMD algorithms,
where in this paper we use the Arnoldi-type algorithm [6].
We term the present analysis as Short-Term Koopman Mode
Decomposition (STKMD).
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Here, following the method in Short-Term Fourier
Transform (STFT) [16], we use the so-called window func-
tion w(t) for the recursive computation of the Koopman
eigenvalues. There are many window functions used in sig-
nal processing (see [17]). By using w(t), our target is the
sampled data of xT (t) in [t0, t0 + T ] defined as

xT (t) = w(t − t0)x(t). (6)

It should be noted that STKMD is similar to STFT. One
difference is that STKMD is capable of estimating damped
oscillatory dynamics as point spectra, while STFT as con-
tinuous spectra. Another is that STKMD can take a vari-
able resolution in the frequency domain, while STFT does
a fixed one.

3.3. Result

Table 1 shows the STKMD for the time-series data on
voltage-phase differences in Fig. 2 by different window
sizes T and window functions w(t). We set the window size
T/s = 32, 64, 128 and the initial time t0/s = 0, 1, . . . , 300−
T for the finite interval [t0, t0 + T ]. Also, the three window
functions from [17]—Hamming window, Hanning win-
dow, and Blackman window—are used, then the frequen-
cies determined from the Koopman eigenvalues and Koop-
man modes for the finite interval are computed. The sam-
pling period for the analysis corresponds to that in Fig. 2:
one second. The horizontal axis for each figure in Tab. 1
shows the frequency, and the vertical axis shows the ini-
tial time t0. We can see that the points are plotted at dif-
ferent intervals in the frequency axis, which is one of the
advantages of STKMD. In each of the figures, by using the
color (red), we show the vector norm of Koopman modes
obtained in each interval. The largest vector norm of the
Koopman modes is set as the reference value. A computed
Koopman mode which vector norm is close to the reference
value is plotted in darker color. Therefore, the dark-colored
points in the figures represent dominant Koopman modes
for the time-series data.

Now, we discuss the dependence of the choice of win-
dow size and window function. By comparison with the
Hannig and Blackman windows, the results with the Ham-
ming window clearly visualize that the distribution of dom-
inant Koopman modes changes as time goes on. Here, we
can see that the distribution of dark-colored points around
0.05 Hz is consistent with the initial time. These dominant
modes contain the frequency component corresponding to
the oscillation with a period of about 20 seconds, which is
regularly excited in Fig. 2. Also, we see that as T increases,
the frequency resolution increases, i.e., the distribution of
Koopman modes becomes dense in terms of the horizontal
axis. In the case of using the Hanning and Blackman win-
dows, the dark-colored points are mostly localized at 0 Hz
and 0.5 Hz, and temporal changes of dominant Koopman
modes are not clear by comparison with the case of us-
ing the Hamming window. These suggest that the STKMD

computation depends on the choice of window size and
window function. Its criterion in terms of time-series anal-
ysis is not clarified and remains unsolved.

4. Conclusion

In this report, we showed the result of short-term KMD
by three different window sizes and window functions
(Hamming window, Hanning window, and Backman win-
dow) applied to the measurement data of voltage-phase
differences collected by µPMU in the campus distribution
grid. The short-term KMD was introduced from the Koop-
man operator for time-variant systems. We visualized that
the distribution of dominant Koopman modes change as
time goes on in the case of using the Hamming window.

Several open problems exist. One is to consider how the
window size T affects the temporal resolution of the short-
term KMD. Another is to compare the proposed spectral
computation with existing different ones.
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