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Abstract—Unstable periodic orbits (UPOs) in chaotic
attractors dominate statistical properties of chaos, and un-
derstanding behavior of the UPOs is quite important for un-
derstanding chaos. In this research, we study the response
of the UPOs to external forces or small parameter changes
by applying perturbation theory. We show that the shift of
the trajectories of the UPOs can be approximated by the
perturbation expansion despite the difficulty to track the
small deviation from the periodic orbit due to positive Flo-
quet exponents. We applied this method to some UPOs of
the logistic map. We found that the lowest order perturba-
tion theory predicts the shift of the invariant measure under
parameter change. This result can be a basis of the future
application of the perturbation theory of chaos, which en-
ables us to predict its response.

1. Introduction

Perturbation theory plays an important role in nonlinear
dynamics. It has been applied in various fields such as syn-
chronization [1], pattern formation [2], etc. Particularly,
phase reduction [3] is a perturbation theory of stable peri-
odic orbits focusing on the zero Floquet eigenvalue.

It is useful to understand responses of chaotic systems
to perturbation for controlling or forecasting them. Here
perturbation includes external forcing, coupling to another
chaotic oscillator, change of parameter of the system, etc.
However, it is difficult to perturbation theory for chaotic
systems because of the orbital instability.

Unstable periodic orbits (UPOs) play important roles to
characterize chaos [4]. Cycle expansion formalisms was
proposed to express statistical quantities of chaos in terms
of sum over periodic orbits in a chaotic attractor [5, 6, 7, 8].
Recently, UPOs which have similar statistical property to
that of plane Couette flow [9] and the shell model [10] were
numerically obtained. Emergence of periodic windows of
chaotic systems can be predicted from local manifold struc-
tures of UPOs [11]. UPOs also attract much interest in
terms of chaos control [12, 13]. Methods of finding out
UPOs from time series [14, 15, 16] were proposed.

If the system is structurally stable, we expect that the
UPO exists under the perturbation close to the orbit of the
unperturbed UPO. Therefore, it would be possible to pre-
dict change of the orbit and other quantities for the per-
turbed UPO using the perturbation theory. In other words,
it is important to uncover the response to perturbation of an
UPO. In this paper, we show that it is possible to apply the
perturbation theory to UPOs in chaotic attractors.

This paper is organized as follows. In Sec. 2, the for-
malism of the perturbation theory is presented. Response
to perturbations is decomposed into modes of the Floquet
matrix of the UPO and expanded in terms of the perturba-
tion parameter. This formalism is applied in the logistic
map and numerically validated in Sec. 3. Summary and
discussions are given in the last section.

2. Formalism

In this section, we introduce our framework to apply the
perturbation theory to UPOs of chaotic maps. We consider
a discrete time evolution equation

X(ε; n + 1) = F[X(ε; n)] + εp[n,X(ε; n)]. (1)

Here, the second term represents the perturbation, and ε
denotes the perturbation parameter. The perturbation van-
ishes for ε = 0. X(ε; n) denotes the dynamical variable
X ∈ Rd at time step n with the perturbation parameter ε.
We assume that this system has a chaotic attractor in the
absence of the perturbation ε = 0.

We consider an UPO of the unperturbed state with period
N, X0(0; n), which satisfies

X0(0; N + 1) = X0(0; 1). (2)

Our goal is to estimate the trajectory of this UPO in the
presence of the perturbation εp using the information of
the unperturbed state X0(0; n). We further assume that this
UPO exists and deforms continuously in ε. Then one can
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expand with the power series in ε as

X0(ε; n) = X0(0; n) +
∞∑
ν=1

ενxν(n). (3)

Substituting this expansion to Eq. (1), and collecting terms
of εν, one can solve these equations sequentially from the
lowest order equation. One can easily verify that the zeroth
order equation in O(ε0) is

X(0; n + 1) = F[X(0; n)], (4)

which is identical to the unperturbed equation. The non-
trivial relationship appears in the first order O(ε1), which
can be written as

x1(n + 1) = L̂0[X0(n)]x1(n) + p[n,X0(0; n)], (5)

where L̂0[X0(n)] denotes the Jacobian of the time evolution
function F[X0(n)]. Note that the Jacobian L̂0 is a function
of n through X0(n). Hence, L̂0[X0(n)] and p[n,X0(0; n)]
are respectively written as L̂0(n) and p(n) in the following.
Note also that the Jacobian is periodic, i.e., L̂0(N) = L̂0(0)
holds.

Solution of Eq. (5) can be written in terms of the Floquet
matrix. Let us consider the linearized equation of Eq. (1):

u(n + 1) = L̂0(n)u(n). (6)

Since L̂0(n) is periodic, the solution of this equation is
given as

u(n) = Ŝ 0(n)Λ̂n
0u(0), (7)

according to the Floquet theorem. Here, Ŝ 0(n) is assumed
to be periodic, in particular that Ŝ 0(N) = Ŝ 0(0) = Îd holds,
where Îd denotes the d dimensional identity matrix. Ac-
cording to this periodicity of S 0, Λ̂N

0 determines the expo-
nential growth or decay of the initial condition u(0) for one
period:

u(N) = ΛN
0 u(0). (8)

The largest eigenvalue of Λ̂N
0 , λN

1 , gives the “average”
growth of one time step. Substituting Eq. (7) into Eq. (6),
one obtains the equality between Ŝ 0(n), Λ̂0, and L̂0(n) as

L̂0(n) = Ŝ 0(n + 1)Λ̂0Ŝ −1
0 (n). (9)

This equality holds for arbitrary initial condition u(0) for
ε = 0, as long as the linearization approximation is valid.
The Jacobian L̂0(n) in Eq. (5) is replaced and we obtain

x1(n + 1) = Ŝ 0(n + 1)Λ̂0Ŝ −1
0 (n)x1(n) + p(n). (10)

In the following we obtain the first order perturbation
using Eq. (10). We introduce new variables

x1(n) = Ŝ −1
0 (n)x1(n), (11)

p(n) = Ŝ −1
0 (n + 1)p(n). (12)

Substituting them into Eq. (10), one can easily verify that
the evolution equation for x1 is given as

x1(n + 1) = Λ̂0x1(n) + p(n). (13)

Since Λ̂0 does not depend on time, the above equation is
solved as

x1(n) = Λ̂n
0x1(0) +

n−1∑
k=0

Λ̂k
0p(n − k − 1). (14)

We then expand this equation in terms of v j, the right
eigenvector of Λ̂0 for the eigenvalue λ j, as

x1(n) =

d∑
j=1

c j1(n)v j, (15)

p(n) =

d∑
j=1

p j(n)v j. (16)

Once the coefficients c j1’s are obtained, the first order per-
turbation is achieved as

x1(n) =

d∑
j=1

c j1(n)Ŝ 0(n)v j, (17)

from Eq. (11). Multiplying the left eigenvector v∗j , which
satisfies the normalization condition (v∗j)

T vl = δ jl, to Eq.
(14) from the left, we have

c j1(n) = λn
jc j1(0) +

n−1∑
k=0

λk
j p j(n − k − 1). (18)

This is the coefficient for jth mode of the first order pertur-
bation.

The final step is to apply Eq. (18) to the UPOs and obtain
the perturbed periodic orbit. If the UPO under considera-
tion remains in the presence of a small perturbation, all per-
turbation coefficients must satisfy the periodicity. There-
fore, the condition

c j1(N) = c j1(0) (19)

is required. Substituting this condition to Eq. (18) and
taking n = N, one obtains

c j1(0) =
1

1 − λN
j

N−1∑
k=0

λk
j p j(N − k − 1)

 . (20)

To the first order, Eq. (9) is rewritten as [Ŝ 0(n + 1) +
εŜ 1(n + 1)](Λ̂0 + εΛ̂1) = [L̂0(n) + εL̂1(n)][Ŝ 0(n) + εŜ 1(n)].
Note the periodicity condition Ŝ 1(0) = Ŝ 1(N) = 0̂. We can
derive the first order perturbation for the Floquet exponent
from this equation. The equation for the O(ε1) terms is
given as

Ŝ 1(n + 1) = L̂0(n)Ŝ 1(n)Λ̂−1
0 + P̂(n)Λ̂−1

0 . (21)
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where P̂(n) = L̂1(n)Ŝ 0(n)− Ŝ 0(n+ 1)Λ̂1. This equation can
be solved in terms of Ŝ 1(n) as

Ŝ 1(n) = Ŝ 0(n)
( n−1∑

k=0

Λ̂k
0Ŝ −1

0 (n − k)P̂(n − k − 1)Λ̂−k−1
0

)
.

(22)

Taking n = N and using the periodicity condition Ŝ 0(0) =
Ŝ 0(N) = Îd and Ŝ 1(0) = Ŝ 1(N) = 0̂, the identity P̂(N) = 0̂
must be satisfied. Thus, we obtain

Λ1 =

N−1∑
n=0

Ŝ −1
0 (n + 1)L̂1(n)Ŝ 0(n). (23)

Eigenvalues of Λ1 is given as

λ(1)
l = v∗l Λ̂1vl (24)

=

N∑
n=1

v∗l Ŝ −1
0 (n + 1)L̂1(n)Ŝ 0(n)vl. (25)

3. Numerical example: Logistic map

We apply this formalism to UPOs of the logistic map

X(ε; n + 1) = fa(ε; X(ε; n)) (26)
= (a + ε)X(ε; n)[1 − X(ε; n)], (27)

and see how the perturbation theory can predict the behav-
ior of UPOs. The dynamical variable X is a scalar for the
case of one dimensional map. Here, the unperturbed state
is the logistic map with a = 3.9, and we regard the small
change of the parameter a as the perturbation. We want
to predict an UPO for a + ε using the UPO for a and the
perturbation theory. The trajectories of the chaos and some
UPOs are depicted in Fig. 1. In this case, the perturbation
is p(n) = X(0; n)[1 − X(0; n)].

The lowest order perturbation is achieved from Eqs. (3)
and (17) as

Xth
0 (ε; n) = X0(0; n) + εc1(n)S 0(n) + O(ε2). (28)

Note that subscript j specifying the eigenvalue in Eq. (17)
does not appear because we study a one dimensional sys-
tem. The eigenvalue λ coincides with

λN =

N∏
n=1

| f ′a(0; X0(0; n))|, (29)

in this case. The eigenvector v is scholar, and we take v = 1
taking into account the normalization condition. For n = 0,
it is easy to obtain

Xth
0 (ε; 0) = X0(0; 0) + ε

1
1 − λN

N−1∑
k=0

λk p(N − k − 1)


+O(ε2), (30)
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Figure 1: Trajectories of chaos of the logistic map for a =
3.9 (a) and UPOs of period 3 (b), period 4 (c), period 5
(d). Two different period 10 UPOs are depicted in panels
(e) and (f). In panel (a), aperiodic chaotic orbit for 30 steps
is presented.

from Eq. (20).
We numerically obtained some UPOs for a = 3.9, and

ε = 0 and ε = 0.01. The perturbation is calculated using the
UPOs for ε = 0, and the orbits for ε = 0.01 are predicted.
Comparison is presented in Tab. 1. The numerical results
and the predictions are in good agreement especially for
UPOs with small period. For UPOs of longer period, the
agreement tends to worsen. This result suggests that the
higher order perturbations have to be considered for longer
periodic orbits.

4. Summary

In this paper, we studied the perturbation expansion of
the UPOs of chaotic maps. We derived the lowest order
equation and applied this formalism to the UPOs of the lo-
gistic map, and found that the theory can predict the shift
of the trajectories of such UPOs, especially if the period of
the orbit is short. Although the precision of the approxi-
mation tends to be worse for longer period UPOs, shorter
period UPOs contribute to the chaotic dynamics more, and
our method would be applicable for predicting the response
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Table 1: Comparison of the unstable periodic orbits for
a = 3.9, ε = 0 and for a = 3.9, ε = 0.01, and ones pre-
dicted by the perturbation theory, Xth

0 (0.01; 0). In the final
column, the ratio Xth

0 (0.01; 0)/X0(0.01; 0) is shown. Perfect
agreement between theory and numerical solution gives ra-
tio=1.

period X0(0; 0) X0(0.01; 0) Xth
0 (0.01; 0) ratio

3 0.130718 0.132652 0.132593 0.97
4 0.621347 0.619507 0.619521 0.999
5 0.655727 0.654960 0.654946 1.02
6 0.550977 0.546091 0.546282 0.96
10 0.461939 0.470205 0.469300 0.89
10 0.974317 0.974090 0.974095 0.98
10 0.963672 0.962648 0.962747 0.90

of the chaos.
There will be many possible application of this method,

e.g., predicting the response of chaos incorporating with
the cycle expansion [5, 6] or applying this method to single
dominant UPO [9, 10].
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