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Abstract—The focus of this work is the interplay be-
tween two distinct areas of dynamical systems: one is the
monodromy theory of polynomial maps with complex vari-
ables; the other is the pruning front theory, a generalization
of the kneading invariant for unimodal maps.We prove that
the dynamics of a real polynomial map is governed by the
monodromy of the same map extended to complex param-
eter and phase spaces, provided some hyperbolicity condi-
tions. As an application, we identify the pruning front of
the Hénon map for some parameter values.

1. Hubbard’s Conjectures

One of the motivations of this work is to give an answer
to the conjecture of John Hubbard on the topology of hy-
perbolic horseshoe locus of the complex Hénon map

Ha,c : �2 → �2 :
(
x
y

)
�→

(
x2 + c − ay

x

)
.

Here a and c are complex parameters.
Below we describe the conjecture following a formula-

tion given by Bedford and Smillie [3].
Let us define the filled Julia set

K�a,c := {p ∈ �2 : {Hn
a,c(p)}n∈� is bounded}

and its real slice K�a,c := K�a,c ∩�2. When the parameters a
and c are both real, the real plane �2 ⊂ �2 is invariant.In
this case, we call Ha,c|�2 : �2 → �2 the real Hénon map.

Our primary interest is on the structure of the parameter
space, especially on the topology of the set of parameters
on which the map become a uniformly hyperbolic horse-
shoe. More precisely, we study the following sets:

H� := {(a, c) ∈ �2 : Ha,c|K�a,c is a hyp. full horseshoe},
H� := {(a, c) ∈ �2 : Ha,c|K�a,c is a hyp. full horseshoe}.

Here we mean by a hyperbolic full horseshoe an uniformly
hyperbolic invariant set which is topologically conjugate to
the full shift map σ defined on Σ2 = {0, 1}�.

A classical result of Devaney and Nitecki claims that

DN := {(a, c) ∈ �2 : c < −(5 + 2
√

5) (|a| + 1)2/4, a � 0}

is contained inH�. They also showed that the set

EMP := {(a, c) ∈ �2 : c > (a + 1)2/4}
consists of parameter values such that K�a,c = ∅. Later, Hub-
bard and Oberste-Vorth investigated the Hénon map form
the complex dynamical point of view, and improved the
hyperbolicity criterion by showing that

HOV := {(a, c) ∈ �2 : |c| > 2(|a| + 1)2, a � 0} ⊂ H�.
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The figure above illustrates a subset of parameter values
on which the chain recurrent set of the real Hénon map is
uniformly hyperbolic (not necessarily a full horseshoe) [1].
Solid lines are parts of the boundaries of DN, HOV and
EMP, from left to right.

We then consider the relation betweenH� andH�. By
the result of Bedford, Lyubich and Smillie,H� ⊂ H�∩�2.
It is then natural to ask what happens in (H� ∩�2) \ H�.

Definition 1 ([3]). We call (a, c) ∈ H� ∩�2 is of type-1 if
(a, c) ∈ H�, and of type-2 if K�a,c = ∅. Otherwise, it is of
type-3.

Since DN ⊂ H�, the set of type-1 parameter values is
non-empty. The set of type-2 parameter values is also non-
empty since it contains EMP ∩ HOV.

Conjecture 1 (Hubbard). There exists a parameter value
of type-3.

We prove that this conjecture is true.

Theorem 1 ([2]). There exist parameter values of type-3.
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Besides the existence, Hubbard also conjectured that
there are infinitely many classes of type-3 parameter values
corresponding to mutually different real dynamics. This
stronger conjecture is, to be precise, given in terms of the
monodromy representation of the fundamental group of the
hyperbolic horseshoe locus as below.

Denote byH�0 the component ofH� that contains HOV.
Let us fix a basepoint (a0, c0) ∈ DN and a topological con-
jugacy h0 : K�a0,c0

→ Σ2. Given a loop γ : [0, 1] → H�0
based at (a0, c0), we construct a continuous family of con-
jugacies ht : K�γ(t) → Σ2 along γ such that h0 = h0. Then
we define

ρ(γ) := h1 ◦ (h0)−1 : Σ2 → Σ2.

It is easy to see that ρ defines a group homomorphism

ρ : π1(H�0 , (a0, c0))→ Aut(Σ2)

where Aut(Σ2) is the group of the automorphisms of Σ2.
Recall that an automorphism of Σ2 is a homeomorphism of
Σ2 which commutes with the shift map σ. We call ρ the
monodromy homomorphism and denote its image by Γ.

The monodromy homomorphism was originally defined
for polynomial maps of one complex variable. In this one-
dimensional case, it had been shown that the monodromy
homomorphism is surjective regardless of the degree of the
polynomial.Hubbard conjectured that the surjectivity also
holds in the case of the complex Hénon map, with the only
exception being σ.

Conjecture 2 (Hubbard). The image Γ of the monodromy
homomorphism and the shift map σ generate Aut(Σ2).

The structure of Aut(Σ2) is quite complicated and there-
fore, the conjecture implies, provided it is true, that the
topological structure ofH� is very rich.

Toward Conjecture 2, we obtain the following result.

Theorem 2 ([2]). The order of the group Γ is infinite. In
particular, it contains an element of infinite order.

2. Monodromy and the Pruning Front

Apart form the theoretical interest, the monodromy the-
ory of complex Hénon map can contribute to the under-
standing of the real Hénon map.

Let (a, c) ∈ H� ∩ �2. If (a, c) is of type-1 or 2, then by
definition K�a,c is a full horseshoe, or empty. Suppose (a, c)
is of type-3. We then ask what is K�a,c in this case. By def-
inition, K�a,c is a proper subset of K�a,c � Σ2. The following
theorem reveals that K�a,c is actually a subshift of Σ2 which
is realized as the fixed point set of the monodromy of a loop
passing through (a, c).

Theorem 3. For any (a, c) ∈ H�0 ∩�2, there exists a loop
γ : [0, 1] → H�0 with γ(1/2) = (a, c) such that Ha,c :
K�a,c → K�a,c is topologically conjugate to

σ|Fix(ρ(γ)) : Fix(ρ(γ))→ Fix(ρ(γ)).

The conjugacy is given by the restriction of h1/2 to K�a,c.

As an application of Theorem 3, we can determine some
subshifts of finite type that appear in the real Hénon map as
follows. See §3 for the definition of Ip, Iq, Ir and Is.

Theorem 4. Let (a, c) ∈ Ip. Then the real Hénon map
Ha,c : K�a,c → K�a,c is topologically conjugate to the subshift
of Σ2 with two forbidden blocks 0010100 and 0011100.
Similarly, K�a,c is conjugate to the subshift of Σ2 defined by
the following forbidden blocks:

10100 and 11100 for (a, c) ∈ Iq

10010 and 10110 for (a, c) ∈ Ir

0010 and 0110 for (a, c) ∈ Is.

Notice that Ip contains (a, c) = (1,−5.4), the parameter
studied by Davis, MacKay and Sannami [5]. The subshift
for (a, c) ∈ Ip given in Theorem 4 is equivalent to that ob-
served by them. Thus, we can say that their observation is
now rigorously verified.

Here we want to emphasise that this theorem is closely
related to the so-called “pruning front” theory [4]. The-
orem 3 implies that “primary pruned regions”, or, “miss-
ing blocks” of K�a,c is nothing else but the region where the
generating partition are interchanged along γ. In fact, no-
tice that Figure 6 gives the complete description of primary
pruned regions for the corresponding real Hénon map.

3. Computations and Proofs

Let us define subsets of the parameter space �2 by

Lp := {a = 1, c � white regions of Figure 1},
Lq := {a = 0.25, c � white regions of Figure 2},
Lr := {a = −1, c � white regions of Figure 3},
Ls := {a = −0.375, c � white regions of Figure 4}.

Let L := Lp ∪ Lq ∪ Lr ∪ Ls ⊂ �2.
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Figure 1: {The shaded region} ⊂ H� ∩ {a = 1}.

Lemma 5 ([2]). If (a, c) ∈ L then Ha,c is uniformly hyper-
bolic on its chain recurrent set R(Ha,c).
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Figure 2: {The shaded region} ⊂ H� ∩ {a = 0.25}.
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Figure 3: {The shaded region} ⊂ H� ∩ {a = −1}.

The proof of this lemma is computer assisted. The algo-
rithm will be sketched briefly in §4.

Recall that the hyperbolicity of the chain recurrent set
implies the R-structural stability.Therefore, it follows from
Lemma 5 that no bifurcation occurs in R(Ha,c) as long as
(a, c) ∈ L. Since L and DN have non-empty intersection
and K�a,c = K�a,c = R(Ha,c) is a hyperbolic full horseshoe on
DN, we know that R(Ha,c) is also a hyperbolic full horse-
shoe for all (a, c) ∈ L.

In general, R(Ha,c) and K�a,c do not necessarily coincide.
However, we can show that if (a, c) ∈ L then R(Ha,c) = K�a,c
and therefore we can conclude L ⊂ H� (see [2]).

The set Lp ∩�2 have three components: two unbounded
intervals, and one bounded interval connecting two white
regions in Figure 1. We define Ip to be this bounded one.
Similarly, Iq, Ir and Is are defined to be the bounded inter-
vals contained in Lq∩�2, Lq∩�2 and Ls∩�2, respectively.
We know that Ip, Iq, Is and Ir are contained in H�0 ∩ �2.
To complete the proof of Theorem 1, we need to show that
these intervals are of type-3.

For this purpose, we make use of Theorem 3. Since we
have already shown that L ⊂ H�0 , we can consider the mon-
odromy of loops in L,

Let βp : [0, 1] → Lp be a loop that turns around the
smaller white island of Figure 1 as illustrated in Figure 5.
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Figure 4: {The shaded region} ⊂ H� ∩ {a = −0.375}.
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Figure 5: The loop βp based at (a, c) = (1,−5.875).

We require that βp(1/2) ∈ Ip, and that βp be symmetric,
that is, β̄p = β−1

p . Then we define a loop γp : [0, 1] →
Lp∪HOV based at (1,−10) ∈ DN by setting γp := ᾱ−1 ·βp ·α
where α : [0, 1]→ HOV∪ Lp is a path from (1,−10) to the
basepoint of βp. Choose the parametrization of γp so that
γp(1/2) ∈ Ip and γ̄p = γ

−1
p hold. Similarly we define loops

γq, γr and γs based at (1,−10) turning around the smaller
islands in Lq, Lr and Ls, respectively.

Proposition 6 ([2]). The automorphism ρ(γp) interchanges
the words 0010100 and 0011100 contained in s = (si)i∈� ∈
Σ2. Namely,

(ρ(γp)(s))i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if si−3 · · · si · · · si+3 = 0011100
1 if si−3 · · · si · · · si+3 = 0010100
si otherwise.

Similarly, ρ(γq) interchanges 10100 and 11100, ρ(γr) in-
terchanges 10010 and 10110, and ρ(γs) interchanges 0010
and 0110. See Figure 6.

To prove the proposition, we follow the continuation of
the symbolic partition of the horseshoe at the base point
(a, c) = (1,−10) using rigorous interval arithmetic. See [2]
for the detail.

Now we are prepared to prove Theorem 1.
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Figure 6: The change of the partition along loops.

Proof of Theorem 1. Since Fix(ρ(γp)) is a non-empty
proper subset of Σ2, Theorem 3 implies that γp(1/2) ∈ Ip is
of type-3. By considering loops homotopic to γp, we can
show that all (a, c) ∈ Ip are also of type-3. �

Theorem 2 immediately follows from the following.

Proposition 7 ([2]). Let γ∅ be a loop in H�0 based at
(a0, c0) which is homotopic to the generator of π1(HOV).
The the order of ψ = ρ(γ∅) · ρ(γs) is infinite.

Theorem 4 is a direct consequence of Theorem 3 and
Proposition 6.

The source codes of the programs for computer as-
sisted proofs are available at the author’s web site
(http://www.cris.hokudai.ac.jp/arai/).

4. Algorithm for Proving Uniform Hyperbolicity

We recall an algorithm for proving the uniform hyper-
bolicity of chain recurrent sets developed by the author [1].

Let f be a diffeomorphism on a manifold M and Λ a
compact invariant set of f . We denote by TΛ the restriction
of the tangent bundle T M to Λ.

In general, proving the uniform hyperbolicity follow-
ing the conventional definition is quite hard. In particular,
when the parameter is close to non-hyperbolic region, it is
very difficult to construct a hyperbolic splitting.

To avoid this difficulty, we introduce the following no-
tion. Consider T f : TΛ → TΛ as a dynamical system. An
orbit of T f is said to be trivial if it is contained in the image
of the zero section.

Definition 2. We say that f is quasi-hyperbolic on Λ if
T f : TΛ→ TΛ has no non-trivial bounded orbit.

Uniform hyperbolicity implies quasi-hyperbolicity. The
converse is not true in general. However, when f |Λ is chain
recurrent, these two notions coincide.

Theorem 8 (Churchill-Selgrade, Sacker-Sell). Assume
R( f |Λ) = Λ. Then f is uniformly hyperbolic on Λ if and
only if f is quasi-hyperbolic on it.

The definition of quasi-hyperbolicity can be rephrased
in terms of isolating neighborhoods as follows. Recall that
a compact set N is an isolating neighborhood with respect
to f if the maximal invariant set Inv(N, f ) is contained in
int N, the interior of N.

Proposition 9 ([1]). Assume that N is an isolating neigh-
borhood with respect to T f : TΛ → TΛ containing the
zero-section of TΛ. Then Λ is quasi-hyperbolic.

In our case of the Hénon map, R(Ha,c) is chain recurrent
[2]. To prove Lemma 5, therefore, it suffices to show that
R(Ha,c) is quasi-hyperbolic for (a, c) ∈ L. By Proposition 9,
all we have to do is to find an isolating neighbourhood con-
taining the zero-section of TR(Ha,c). More precisely, it is
enough to find N ⊂ T M such that

R(Ha,c) ⊂ N and Inv(N, T Ha,c) ⊂ int N

hold. Here we identify R(Ha,c) and its image by the zero-
section. Since there are algorithms [1, Proposition 3.3]
that efficiently compute rigorous outer approximations of
R(Ha,c) and Inv(N, T Ha,c), these conditions can be checked
on computers rigorously.
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