
Graph Properties of Brain Functional Networks during Errorful and Errorless
Learning of Color-Name Associations

Madoca Yamashita†‡§, Tetsuya Shimokawa†§, Ferdinand Peper†§, Junko Uchida† and Rumi Tanemura†

†Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University
7–10–2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan

‡Rehabilitation Dept., Asakayama General Hospital
3–3–16, Imaike-cho, Sakai, Osaka 590-0018, Japan
§Center for Information and Neural Networks (CiNet),

National Institute of Information and Communications Technology, and Osaka University
1–4 Yamadaoka, Suita, Osaka 565-0871, Japan

Email: 143k209k@stu.kobe-u.ac.jp,{shimokawa,peper}@nict.go.jp, 133k702k@stu.kobe-u.ac.jp, rumtan@people.kobe-u.ac.jp

Abstract—Errorful and errorless learning are well-
known learning methods in the field of rehabilitation sci-
ence. Errorful learning employs a trial-and-error method
to memorize new knowledge, whereas errorless learning
aims to prevent patients making mistakes in memorization.
Much of the previous research considers only observations
on the behavioral level, and they do not completely clarify
the neural mechanisms during errorful and errorless learn-
ing. In this paper, we investigate fMRI data of human brain
activity during errorful and errorless learning. In a case
study of eight subjects, we found that the network during
errorful learning tends to be more highly modulated than in
the case of errorless learning in the majority of the subjects.

1. Introduction

In the field of rehabilitation science, it is important to
develop methods according to which patients learn new
knowledge or techniques so that they can adapt to new
environments quickly. Two well-known learning methods
areerrorful (EF) learninganderrorless (EL) learning[1].
EF learning employs a trial-and-error method to memorize
new knowledge, whereas EL learning aims to prevent that
patients make mistakes in memorization from the first time
they are presented with new knowledge. EL learning thus
avoids a trial-and-error process, and presents knowledge
as-is as the correct answer or appropriate reaction to pa-
tients before they make a mistake.

In 1994, Baddeley and Wilson reported the effect of EL
learning in patients with memory problems as well as in el-
der subjects [2]. This study contributed significantly to EL
learning becoming a hot topic in the field of rehabilitation.
However, Clare et al. critically reexamined the published
papers favoring EL learning and pointed out that the evi-
dence showing the positive effects of EL learning [3] has
been limited.

In contrast to the main-stream research on EL learning,
there have been only few papers on the merits of EF learn-
ing. Anderson and Craik [4] have shown that EF learning

is effective in enhancing the power of memory in younger
subjects. Middleton and Schwartz [5] have pointed out the
advantages of EF learning, in that it allows for difficult (and
potentially errorful) memory retrieval practice for robust
learning as well as prolonged performance gains.

The arguments in the above literature suggest that there
is no clearcut case to be made for either EF learning or
EL learning, and that the classification into merely these
two methods may be incorrect. Much of the previous re-
search considers only observations on the behavioral level,
so that it is difficult to clarify the neural mechanisms during
EF and EL learning. Functional magnetic resonance imag-
ing (fMRI) is helpful in this respect, because it measures
the brain activity itself, and it does so with a fairly good
spatial resolution of several millimeters. As far as we are
aware, only two papers have measured brain activity occur-
ring with both EF and EL learning by using fMRI ([6], [7]),
but both papers conducted fMRI scans on human subjects
during test only, not during the actual learning phase. In
this paper, we investigate fMRI data of human brain activ-
ity during EF and EL learning by applying graph theory to
the analysis of data in a case study involving eight subjects.

2. Methods

Whole-brain fMRI images are used from eight healthy
subjects (36± 14 years, four male and four female, nor-
mal vision) scanned by a 3T fMRI scanner Magnetom Trio
(Siemens AG) with 3 second repetition time, whereby each
scan consists of 45 contiguous slices taken over more than
6 minutes. We analyze both the learning and testing phases
in order to check how to consolidate the memory and how
to retrieve knowledge stored in the memory. We also an-
alyze the resting state brain activity as the default mode.
There are a total of five tasks conducted by our subjects:
EF-learning, EF-test, EL-learning, EL-test, and rest. The
first four of these tasks concern memorization of color-
name associations, the colors presented by five rectangles
and the names presented in phonetic (Japanese) alphabet
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Figure 1: Example of visual input pictures. Japanese sen-
tence means ”Which color is Nataneyu-iro?”

rather than by Chinese characters to avoid association with
particular meanings. In order to make the task sufficiently
difficult for healthy subjects, we use traditional Japanese
colors, like ”Nataneyu-iro”, the names of which are only
known to experts (like in the Kimono industry), but not to
the general public in Japan (see Fig. 1).

Compared with theword stem completion taskoften em-
ployed in similar experiments, our task includes both lan-
guage and visual information (color). This is considered
more realistic by us and it activates a larger part of the
whole brain, rather than being limited to a specific brain
region.

3. Results

3.1. EF-test and EL-test scores

The relation between EF-test and EL-test scores are
shown in Fig. 2, the eight rectangles corresponding to the
eight subjects. The color of each rectangle indicates the age
of the subject, according to the color bar. The results indi-
cate that the scores for EL learning tend to be better than
the scores of EF learning for subjects whose total score
is higher than average. We can also see that the score of
EL learning for elder subject is better than the score of EF
learning.

Additionally, we extract a functional connectivity net-
work of human brain activity. Based onautomated anatom-
ical labeling (AAL), we separate 116 areas in the brain into
regions of interest (ROI). Subsequently, we calculate the
ensemble average of the time-series of the individual vox-
els in each ROI: this is considered as the representative
time-series of the ROI. Based on the 116 representative
time-series, we calculate pairwise correlation coefficients,
and organize them as a correlation matrix (116×116, square
matrix) for each of the subject-tasks, making a total of forty
(i.e., eight by five) matrices (top of Fig. 3).

We compare the average of the elements of the whole
correlation matrix, except for diagonal elements, between
EF learning and EL learning in the bottom of Fig. 3. Each

Figure 2: Relation between EF-test score (abscissa) and
EL-test score (ordinate).

Figure 3: Top: All correlation matrices, organized in one
matrix. Each row corresponds to a task, and each column to
a subject. The size of each correlation matrix is 116× 116.
Bottom: The average of the elements of the whole correla-
tion matrix not including the diagonal elements, plotted for
EF learning (abscissa) against EL learning (ordinate). The
diagonal line indicates the case when the values for both
EL and EF learning are the same.
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Figure 4: The average degree for each subject, as the func-
tion of the thresholdrc for the calculation of the adjacency
matrix from the correlation matrix. Blue, green, and red
graphs correspond to EF-learning, EL-learning, and the
resting state, respectively.

point corresponds to each subject. We can see that the av-
erage correlation coefficients for EF learning tend to be
higher than the corresponding values for EL learning ex-
cept for the 4th subject.

3.2. Graph properties

The correlation matrices are used as the basis for our
graph-theoretical analysis. Functional network graphs,
composed of nodes (ROI) and undirected edges, are es-
tablished by connecting each pair of nodes of which the
respective time-series have high correlations. If an ele-
ment of the correlation matrix is larger (smaller) than the
thresholdrc, then the corresponding element of the adja-
cency matrix is 1 (0), which means that there is a link (no
link) between the corresponding nodes in the graph. We
investigate the major graph properties of the adjacency ma-
trix, such as degree, clustering coefficient, global efficiency
(inversely correlated to the characteristic path length), and
modularity. The definitions of all graph properties are in
[8].

There are two main results about the graph properties of
brain functional networks. One concerns the comparison
of EF learning and EL learning. The mean degrees of the
functional connectivity network during EF learning (blue
graph in Fig. 4) are shown to be larger than the correspond-
ing characteristics for EL learning (green graph in Fig. 4)
within the intermediate range of the mean degree (roughly

Figure 5: The average clustering coefficient for each sub-
ject, as the function of the thresholdrc for the calcula-
tion of the adjacency matrix from the correlation matrix.
Blue, green, and red graphs correspond to EF-learning, EL-
learning, and the resting state, respectively.

Figure 6: The global efficiency for each subject, as a func-
tion of the thresholdrc for the calculation of the adjacency
matrix from the correlation matrix. Blue, green, and red
graphs correspond to EF-learning, EL-learning, and the
resting state, respectively.
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Figure 7: Modularity for the resting state, based on the
voxel-based adjacency matrix.

from 50 until 100), except for the 8th subject. Clustering
coefficient and global efficiency (inversely correlated to the
characteristic path length) also show similar properties (see
Fig. 5 and Fig. 6).

These results indicate that the recognition demand for EF
learning is stronger (high degree and clustering coefficient)
and more efficient (high global efficiency and short path
length) than that of EL learning. This can be explained
from EF learning being proactive and EL learning being
reactive.

The other result concerns the comparison of the total
score and the graph properties of the resting state. Based on
the voxel-based adjacency matrix, we show that the modu-
larity of the resting state network tends to inversely corre-
late to the total memory score (sum of EL and EF learning
score), except for the 6-th subject. This indicates that the
total score corresponds to the topology of the default-mode
network (see Fig. 7).

Concerning the exceptions for each case, the 4th and 6th
subjects achieve hightest and second highest scores respec-
tively in this experiment. These two subjects may have
found a better strategy to improve EF/EL learning, and the
strategies seem to be quite different between the 4th and
6th subjects. The 8th subject’s score is one of the lowest
scores. There is a possibility that this subject chose the
wrong strategy or gave up on achieving a good strategy.
In order to check the validity of this hypothesis, a detailed
analysis for each exceptional case is necessary. This will
be left for future work.

4. Conclusion

In a case study of eight subjects, we found that the net-
work during errorful learning tends to be more highly mod-
ulated than in the case of errorless learning, although there
is an exception.

In conclusion, we have investigated the graph proper-
ties of functional connectivity networks in healthy human
brains during EF and EL learning. This study is the first
time to analyze fMRI data during learning and compare the

effects of EF and EL learning. In the case study of eight
subjects, we found that the network during EF learning
tends to be more connected and highly modulated than in
the case of EL learning, except for one subject. These find-
ings indicate that EF learning requires more efforts from
subjects than EL learning. Independent of EF and EL learn-
ing, the score itself for memory learning tends to inversely
correlate to the modularity for the resting state network,
except for one subject.

Regarding the exceptional cases, the corresponding sub-
jects are extreme cases (highest or lowest scores). These
subjects may choose unique strategies for learning, so we
should not exclude such exceptions, and consider them to
be related to personal preferences of individuals. In gen-
eral, it is difficult to say whether, for example, EL learn-
ing is better than EF learning for all people. The reality is
that personal choice matters in the preference for EL or EF
learning. By proceeding with our graph analysis of fMRI
data, we may find a way to estimate which way of learn-
ing is better for each subject, i.e., finding a custom-made
learning menu for rehabilitation and occupational therapy.
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