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Abstract—We consider the ‘guaranteed’ error estimate
for solutions to two-point boundary value problems. ‘Guar-
anteed error’ requires every error in solving the system.
It is important and difficult to analyze the error which
is caused by the truncation or the discretization of prob-
lems. We overcome these difficulties by using Newton-
Kantorovich theorem and the solution operator to lin-
earized problem. The original problem is transformed into
a nonlinear operator equation. The guaranteed error is
bounded by Newton-Kantorovich theorem through verify-
ing some constants concerning the solution operator. Fi-
nally, numerical result is presented.

1. Introduction

This article is concerned with two-point boundary value
problems of the form:{

−u′′ = ruN + f 0 < x < 1,
u(0) = u(1) = 0, (1)

where N ≥ 2 is a natural number, r ∈ L∞([0, 1]) and f ∈
L2([0, 1]). We propose a numerical verification method to
prove the existence of solutions to problem (1). The goal
of our verification method is to get the guaranteed error
estimate. It is bounded by the following form:

∥u − û∥X ≤ Const.

where u is the exact solution, û is an approximate solution,
X is a suitable functional space and Const. is computable.
The guaranteed error estimate is rigorous i.e. it includes
all computational error such as the discretization error and
the rounding error when solving the problems. Namely,
we can solve the two-point boundary value problem with
mathematically rigorous by our verification method.

The main point of the verification method is to transform
the problem (1) into a nonlinear operator equation with a
solution operator to the following linearized problem:{

−u′′ = f 0 < x < 1,
u(0) = u(1) = 0. (2)

In [4, 6], there are several methods which have been de-
veloped to bound the guaranteed error when N = 2. The so-
lution operator is denoted as an integral operator by Green
function in [4]. (1) is transformed into the integral equa-
tion. The approximate solution operator with discretizing
the integral equation is used. We modified this operator ar-
gument in finite element method in [6]. An approximate
solution operator is defined as a matrix form. The solution
operator is estimated by the minimal eigenvalue of the cor-
responding problem to (2) and some operator formulation.
We applied Banach’s fixed point theorem to fixed point for-
mulation by the solution operator. Then, the guaranteed er-
ror estimate is given. However, it is difficult to formulate
the fixed-point formulation if N ≥ 3.

In this article, Newton-Kantorovich theorem is applied
to a nonlinear operator equation corresponding to (1). We
check some conditions of the theorem concerning the non-
linear operator. There are three constants: the estimation
of the inverse operator, the residual of the operator equa-
tion and the Lipschitz constant of the Fréchet derivatives.
The inverse operator estimation is given by Theorem2. If
three assumptions of the theorem are obtained, we can esti-
mate the norm of the inverse operator. The norm estimation
gives us the residual of the operator equation. We have the
upper bound of the residual. Moreover, the Lipschitz con-
stant needs the condition that the parameter is in the open
ball centered at the approximate solution with some radius.
By using this condition, we have the Lipschitz constant.

We introduce our verification procedure in Section 2.
First the solution operator is defined. We explain the
discretization of the problem. The approximate solution
operator is also defined. After that we show Newton-
Kantorovich theorem. In order to obtain the assumptions
of Newton-Kantorovich theorem, we need three constants.
We compute these constants by using the argument of the
solution operator. Finally a numerical result is presented in
Section 3.

2. Numerical Verification Method

In this section, we shall propose the following verifica-
tion procedure. In order to get the guaranteed error estimate
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between the exact solution and an approximate solution by
finite element method, Newton-Kantorovich theorem is ap-
plied to nonlinear operator equation. We first introduce the
solution operator of finite element method.

2.1. Solution operator and its approximate operator

A solution operator K leads the solution u = K f of lin-
earized equation (2). Here, in this section, we set X =
L2([0, 1]) as the functional space. The solution operator
is linear bounded operator: K ∈ L(X, X). We note that
K : X → H1

0 ⊂ X is the compact operator by Sobolev
embedding theorem.

After that we consider an approximate operator of K .
Let

∆ : 0 < x1 < ... < xn < 1

be a partition of the interval [0, 1]. Discretization is n + 1
divide equally on [0, 1]. h is the width of an interval
[xi−1, xi]i=2,...,n. Pn : X → Xn is defined as a discrete projec-
tion. Let S h be the class of basis in finite element method.
We denote that a discrete functional space of X is Xn ⊂ H1

0 ,
which is defined as the set of polynomials that satisfies the
boundary conditions. By these basses, a discrete functional
space is composed

Xn = span{φh1 , φh2 , ..., φhn }, φhi ∈ S h.

An element of Xn is described

uh ∈ Xn, uh =

n∑
j=1

u jφh j

where u j = u(x j). Moreover, we choose a norm of Xn

∥uh∥Xn = ∥uh∥2 =
√√ n∑

j=1

u2
j .

According to the standard argument of finite element
method [2], the linearized problem (2) is transformed into
the following weak formula:

(u′, φ′h) = ( f , φh), φh ∈ Xn.

Here setting

uh =

n∑
j=1

u jφh j , fh =
n∑

j=1

f jφh j ,

Dn = (φ′h j
, φ′hi

)n
i, j=1, An = (φh j , φhi )

n
i, j=1.

Discretizing weak formula, we obtain the finite linear sys-
tem:

DnUh = AnFh

where Uh = (u1, . . . , un)T , Fh = ( f1, . . . , fn)T are coeffi-
cients of discrete function uh and fh. If Dn has the inverse
matrix, a finite element solution is written as follows:

Uh = D−1
n AnFh.

On the other hand, an expression of the solution operator
says that u = K f . Discreting f and K , the approximate
solution is obtained

uh = PnK fh.

By identifying Uh with uh and Fh with fh, the approximate
solution operator PnK : Xn → Xn is defined as the matrix
form:

PnK = D−1
n An. (3)

2.2. Newton-Kantorovich theorem

By using the solution operator, the problem is trans-
formed into operator equation:

(1) ⇐⇒ u = K(ruN + f ).

Nonlinear operator equation is defined

F(u) = u − KruN − K f = 0. (4)

Here, we assume that we can find a finite element solution,
which is a good approximation of the solution. Then, the
next step of our method is to check conditions of Newton-
Kantorovich theorem:

Theorem 1 (Newton-Kantorovich Theorem) Let F be a
nonlinear operator defined by (4). We assume that the
Fréchet derivative F′(u) is nonsingular and satisfies the in-
equality:

∥F′(û)−1F(û)∥X ≤ α,
for a certain positive constant α, where û is an approximate
solution to (4). Furthermore, we assume that F satisfies

∥F′(û)−1(F′(v) − F′(w))∥X ≤ ω∥v − w∥X

with a certain positive constant ω, for ∀v,w ∈ B(û, δ) ⊂ X,
which is an open ball centered at û with radius δ. If

αω ≤ 1
2

(5)

and

ρ =
1 −
√

1 − 2αω
ω

,

then there exists the unique exact solution u to (4) in
B(û, ρ). Therefore the guaranteed error estimate is given
by

∥u − û∥X ≤ ρ. (6)

In this way, we can show the existence and the unique-
ness of the exact solution. Additionally, the guaranteed er-
ror is bounded by Newton-Kantorovich theorem. In order
to verify the theorem, we need to compute three constants
C1,C2 and C3. These satisfy

∥F′(û)−1∥L(X,X) = ∥(I − NKrûN−1)−1∥L(X,X) ≤ C1,

∥F(û)∥X = ∥û − KrûN − K f ∥X ≤ C2
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and

∥F′(v) − F′(w)∥X
= ∥NKr(vN−2 + vN−3w + ... + vwN−3 + wN−2)(v − w)∥X
≤ C3∥v − w∥X .

Hence, we set α = C1 ∗C2, ω = C1 ∗C3. If three constants
are estimated and the condition (5) is obtained, then we get
the guaranteed error estimate in the form (6).

2.3. Some constants

In this part, we shall concern with some constants re-
garding Newton-Kantorovich theorem. We explain some
techniques to compute these constants. First of all, C1 is
estimated according to the following theorem with respect
to the inverse operator.

Theorem 2 (Oishi[4] 7.2) Let K : X → X be the com-
pact operator and Pn : X → Xn be the projection operator
where Xn ⊂ X is the discrete functional space on X. We
assume that PnK is estimated as

∥PnK∥L(X,Xn) ≤ K,

a difference between K and PnK is estimated as

∥K − PnK∥L(X,X) ≤ L

and finite dimensional operator (I − PnK) : Xn → Xn has
the inverse operator, which satisfies

∥(I − PnK)−1∥L(Xn,Xn) ≤ M.

If three assumptions are obtained and (1+MK)L < 1, then
the operator (I − K) has the inverse operator and that is
estimated as

∥(I − K)−1∥L(X,X) ≤
1 + MK

1 − (1 + MK)L
.

In order to compute the constant C1, three constants
K1, L1 and M1 is needed in assumptions of Theorem2.
Since K is compact operator, r ∈ L∞([0, 1]) and û ∈ Xn,
we see the operator NKrûN−1 is compact. Then, we have

∥PnNKrûN−1∥L(X,Xn) ≤ N∥PnK∥L(X,Xn)∥r∥∞∥ûN−1∥∞ ≤ K1,

and

∥NKrûN−1 − PnNKrûN−1∥L(X,X)

≤ N∥K − PnK∥L(X,X)∥r∥∞∥ûN−1∥∞
≤ L1.

To be more precise, the estimation of ∥PnK∥L(X,Xn) ≤ K and
∥K−PnK∥L(X,X) ≤ L plays important role in the verification
method. These are given as follows:
∥PnK∥L(X,Xn) ≤ K is obtained by the minimal eigenvalue.

The eigenvalue problem:{
−u′′ = λu 0 < x < 1,
u(0) = u(1) = 0,

has eigenvalues λ = n2π2, then the minimal eigenvalue is
λmin = π

2. We have the estimation of K

∥K∥L(X,X) = sup
f∈X

∥K f ∥X
∥ f ∥X

≤ sup
f∈X

λ−1
min∥u′′∥X
∥ f ∥X

=
1
π2 .

According to the argument of the discrete projection X to
Xn, ∥Pn∥L(X,Xn) ≤ 1. Thus, we get the constant K

∥PnK∥L(X,Xn) ≤ ∥Pn∥L(X,Xn)∥K∥L(X,X)

≤ 1
π2 = K.

∥K − PnK∥L(X,X) ≤ L is given by the error estimate
of FEM. By using the error estimation of FEM (Aubin-
Nitshe’s trick):

∥u − Pnu∥X ≤
h2

π2 ∥u
′′∥X ,

we have

∥K − PnK∥L(X,X) ≤ sup
f∈X

∥K f − PnK f ∥X
∥ f ∥X

= sup
f∈X

∥u − Pnu∥X
∥ f ∥X

≤ h2

π2 = L.

Furthermore, by using the approximate solution operator
PnK , we get the estimation of M1. Let Bn be the matrix:

Bn = (Nr(x)ûN−1(x)φh j , φhi )
n
i, j=1.

Assume that R is the approximate inverse matrix of Dn−Bn,
by (3) we have

∥(I − PnNKrûN−1)−1∥L(Xn,Xn)

= ∥(I − D−1
n Bn)−1∥2

= ∥(Dn − Bn)−1Dn∥2
= ∥(Dn − Bn)−1R−1RDn∥2
= ∥(I + R(Dn − Bn) − I)−1RDn∥2
≤ ∥RDn∥2

1 − ∥R(Dn − Bn) − I∥2
= M1.

In this way, the constant C1 is given by Theorem2,

C1 =
1 + M1K1

1 − (1 + M1K1)L1
.

Secondly, we get the constant C2 with norm estimation.
Namely, the residual of the operator equation (4) is neces-
sary. The norm estimation is given so that

∥F(û)∥X
= ∥û − KrûN − K f ∥X
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=
∥∥∥û − PnKrûN − PnK fh − (K − PnK)rûN

−PnK( f − fh) − (K − PnK) f
∥∥∥

X

≤ ∥Res∥Xn + ∥K − PnK∥L(X,X)∥r∥∞∥ûN∥Xn

+∥PnK∥L(X,Xn)∥ f − fh∥X + ∥K − PnK∥L(X,X)∥ f ∥X
= C2.

Here, ∥Res∥Xn is the residual of the finite linear system. The
norm ∥ f − fh∥X can be estimated by the interpolation the-
ory. ∥û∥∞ is the maximum norm of û. Then, we have the
residual of the operator equation.

Finally, C3 is computable. We note that v,w ∈ B(û, δ),
these are bounded by

∥v∥X ≤ ∥û∥Xn + δ, ∥w∥X ≤ ∥û∥Xn + δ.

Therefore, we have

∥F′(v) − F′(w)∥X
= ∥NKr(vN−2 + vN−3w + ... + vwN−3 + wN−2)(v − w)∥X
≤ N(N − 1)∥K∥L(X,X)∥r∥∞(∥û∥Xn + δ)

N−2∥v − w∥X .

Accordingly, C3 follows that

C3 = N(N − 1)∥K∥L(X,X)∥r∥∞(∥û∥Xn + δ)
N−2.

In this way, we have the constants C1,C2 and C3. The guar-
anteed error is bounded by the above verification method.

3. Numerical Example

For an application of our proposal method, we treated
the following two-point boundary value problem:{

−u′′ = u3 − cos 2πx 0 < x < 1,
u(0) = u(1) = 0, (7)

In this case, an approximate solution û is led by FEM with
Newton method. We choose that the finite element sub-
space S h is one-dimensional piecewise hat functions. The
shape of an approximate solution to (7) is shown as follows,
where the divide number is 32.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

For this approximate solution, we have

αω < 1.8521 × 10−8.

Hence, there exists the exact solution of (7) in the ball cen-
tered at û with radius:

ρ = 4.1557 × 10−4.

We have the guaranteed error: ∥u − û∥X where X =

L2([0, 1]). Furthermore, increasing the divide number, we
can improve the guaranteed error estimate.

Divide number Guaranteed error estimate
8 6.649226221034610e-03
16 1.662284973637663e-03
32 4.155701919055114e-04
64 1.038924958465566e-04
128 2.597314309434374e-05
256 6.493342022539881e-06
512 1.623475629205407e-06
1024 4.063961081846812e-07
2048 1.026303844134345e-07

All computation is carried out on Mac OS X, Intel Core2
Duo 1.86GHz by using MATLAB 2009a with toolbox for
verified computations, INTLAB[5].
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