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Abstract—The chaotic phase synchronization transition
is studied in connection with the zero Lyapunov exponent.
We propose a conjecture that it is associated with a switch-
ing of the maximal finite time zero Lyapunov exponent,
which is introduced in the framework of large deviation
analysis. A noisy sine circle map is investigated to intro-
duce the conjecture and it is tested in an unidirectionally
coupled Rössler system by using the covariant Lyapunov
vector associated with the zero Lyapunov exponent.

1. Introduction

Many of cooperative behaviors in physical, chemical,
and biological systems can be modeled by a coupled sys-
tem of periodic oscillators. The important problem there
is to clarify the condition under which the phases of peri-
odic oscillators do synchronize. This phase synchroniza-
tion problem has been extensively studied [1]. The os-
cillators are not always periodic but they are also chaotic
in some practical cases. The phases of chaotic oscilla-
tors were also discovered to synchronize by Rosenblum
et al. [2]. This chaotic phase synchronization (CPS) has
been observed in experimental systems, e.g., electronic cir-
cuits [3], laser systems [4], and convective flows [5]. Thus
CPS is also an important phase synchronization problem.

The study on synchronization of chaotic oscillators orig-
inated with the complete synchronization for coupled iden-
tical chaotic oscillators [6]. Other several types of chaotic
synchronization including CPS have been also found [7].
Theoretical studies on chaotic synchronization have at-
tempted to formulate its transition as a stability change of
the system, and it was revealed that synchronization arises
when one of Lyapunov exponents (LEs) switches its sign,
for some types of chaotic synchronization [8, 9, 10]. CPS
was also discussed in connection with the zero LE, which
is one of LEs vanishing in the absence of coupling and is
assumed to be connected with the dynamics of phase dif-
ference, but no obvious relation between them has been ob-
tained. In fact, it was proved that no exact relation between
the switching of the zero LE in its sign and the CPS tran-
sition exists [11, 12]. In this Letter, we show that the CPS
transition is associated with a qualitative change not in the
zero LE itself but in the fluctuation of zero LE. This is also
a stability change of a new kind qualitatively different from

those known for other types of chaotic synchronization.

2. CPS and discrete time dynamics

Let us consider the unidirectionally coupled Rössler os-
cillators

ẋd = −ωdyd − zd, ẋr = −ωryr − zr + ε(xd − xr),
ẏd = ωd xd + ayd, ẏr = ωr xr + ayr,
żd = p + zd(xd − c), żr = p + zr(xr − c),

(1)
where (xd, yd, zd) and (xr, yr, zr) are the coordinates of drive
and response oscillators, respectively, and ε is the coupling
strength. The parameter ωd(r) controls the natural mean fre-
quency of the drive (response) oscillator. In the following,
we take ωd = 0.93 and ωr = 0.95, and the other control
parameters are fixed at a = 0.15, p = 0.2, and c = 10. The
system of Eq. (1) is known to show the CPS transition as ε
is increased [11, 13]. The phase of drive (response) oscil-
lator is introduced as the rotation angle φd(r)(t) around the
origin in the xd(r)-yd(r) plane and the phase difference θ(t)
of the coupled system is defined as θ(t) = φr(t) − φd(t). In
the presence of CPS, θ(t) is bounded and the mean phase
velocity

Ω ≡ lim
T→∞

θ(T ) − θ(0)
T

= 〈θ̇(t)〉 (2)

vanishes, where 〈·〉 denotes the long time average.
Let us introduce the Poincare section defined by the con-

dition yd = 0 and xd > 0, and tn (n = 1, 2, 3, · · ·) be the time
of the nth crossing of the orbit, i.e., φd(tn) = 2πn. Then the
CPS transition can be determined by the discrete time dy-
namics of the phase difference θn ≡ θ(tn) = φr(tn) − φd(tn).
The relation between θn and θn+k (k > 0) is approximately
expressed as [14]

θn+k ' θn + f (θn) + g(θn)h(An), 〈h(An)〉 = 0, (3)

where f (θ) and g(θ) are 2π-periodic functions, and A de-
notes the variables other than θ on the Poincare section.
Let us denote the minimum and maximum values of h(An)
by hmin and hmax, respectively, and assume that f (θ) and
g(θ) are continuous functions. Note that h(An) is always
finite, since the attractor occupies a bounded region in the
phase space. Then, a sufficient condition for the presence
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of CPS is expressed as follows: there is an interval I of θ
such that, for any given h ∈ [hmin, hmax], θ + f (θ) + g(θ)h
is monotonically increasing in I and f (θ)+ g(θ)h has a pair
of zeros in I [15]. Figure 1 shows the graph of θn-θn+k with
k = 15 for Eq. (1) with ε = 0.033 near the CPS transition
point ε = εc(' 0.042), which is consistent with Eq. (3).
The above condition of CPS will be applicable for phase
coherent chaotic oscillators, but there are another possible
mechanisms of CPS with different conditions from those
for non-phase coherent ones [16, 20]. In the following, the
phase coherence of chaotic oscillators is assumed.

Figure 1: Graph of θn+k vs θn with k = 15 for Eq. (1) with
ε = 0.033. The symbol + shows the averaged result, i.e.,
h(An) is averaged out.

As a stochastic model of Eq. (3), by replacing the chaotic
modulation term h(An) with an independent random vari-
able ξn, let us introduce the noisy sine-circle map [16]

θn+1 = ω + θn − ε sin θn + ξn, (4)

where ω > 0 and ε ≥ 0 are control parameters corre-
sponding to the average natural frequency difference and
the coupling strength, respectively, and g = 1 and k = 1 is
assumed for simplicity. Here we assume that ξn distributes
uniformly over an interval [−h0, h0] for simplicity. Note
that, in this case, the mean phase velocity of Eq. (2) is re-
placed by Ω ≡ limN→∞(θN −θ0)/N. The above condition of
CPS for Eq. (4) holds if εc ≡ ω+h0 < ε ≤ 1 is satisfied. It is
also obvious that the phase desynchronization takes place
for ε < εc, because the difference θn+1 − θn is not less than
ω − ε + ξn = εc − ε + ξn − h0 and it becomes positive with
a finite probability. Thus the CPS transition takes place at
ε = εc. In the following, we set ω = 0.4 and h0 = 0.5 that
lead to εc = 0.9.

Now let us investigate the zero LE in the noisy sine-
circle map. For Eq. (4), there exists only one LE Λ̄ that
is calculated as

Λ̄ = lim
N→∞

1
N

N−1∑
k=0

λ(θk) = 〈λ(θk)〉, (5)

where λ(θ) ≡ log |1 − ε cos θ| is the local expansion rate.
Λ̄ is certainly the zero LE, which is assured by noting that
Λ̄ = 0 at ε = 0. It is easily evaluated that Λ̄ ∝ −ε2 for
Eq. (4). Furthermore, Fig. 3 shows the same dependence of
Λ̄ on ε for Eq. (1), which seems to be quite general behavior
for the zero LE, as predicted by Ref. [12].

3. Finite time LE analysis

Instead of the zero LE itself, let us consider the finite
time LE [17] defined as

Λn(θ0) =
1
n

n−1∑
k=0

λ(θk), (6)

which converges to Λ̄ in the limit n→ ∞. We here discuss
the behavior of Λn(θk) for Eq. (4) in the present and absent
cases of CPS. In the presence of CPS, i.e., ε > εc, all points
of the orbit {θn} after initial transients are bounded as θ− ≤
θn ≤ θ+, where θ± satisfies ω ± h0 − ε sin(θ±) = 0 and
0 < 1−ε cos θ− < 1−ε cos θ+ < 1. Then the local expansion
rate λ(θn) is always negative, and hence Λn(θk) < 0 holds
for any k. In the absence of CPS, i.e., ε < εc, the orbit
{θn} can not be localized but it spreads out so that θ̃n ≡ θn
(mod 2π) distributes over the interval [0, 2π). As a result,
since λ(θn) becomes positive for π/2 < θ̃n < 3π/2,Λn(θk) >
0 holds for some k. So we define Λmax as

Λmax = lim
n→∞

max
k
{Λn(θk)}. (7)

The above discussion gives that Λmax > 0(< 0) holds in the
absence (presence) of CPS.

In the case of h0 > ω, Λmax can be determined. For
ε > εc Eq. (4) with ξn = h0 has a stable fixed point at
θ = θ+. For ε < εc Eq. (4) with ξn = −ω > −h0 has
an unstable fixed point at θ = π. At each of these fixed
points λ(θ) takes its possible maximal value and, with a
finite probability, there exists an arbitrarily long segment of
the orbit keeping staying around it. Thus Λmax is obtained
as

Λmax =

{
log(1 + ε), ε < εc,

log
(
1 −
√
ε2 − ε2c

)
, ε > εc

(8)

showing a discontinuity at the CPS transition point ε = εc.
Note that Λmax converges to zero obeying a scaling law
Λmax ∝ −

√
ε − εc for ε > εc. In summary, the CPS tran-

sition is characterized by Λmax switching discontinuously
between a positive and zero.

In Fig. 2, Eq. (8) is compared to the numerically evalu-
ated Λmax with two different ensemble numbers N. Since,
in the present case, the possible maximal value of λ(θk) =
Λ1(θk) coincides with Λmax as used in the derivation of
Eq. (8), n = 1 is used in order to save the ensemble number
N. Figure 2 suggests that the numerical result will converge
to the theoretical one as N → ∞.

Here we propose a conjecture that Λmax of the zero LE
characterizes the CPS transition, i.e., it switches discontin-
uously between a positive and zero at the transition to CPS,
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Figure 2: Λmax vs ε for Eq. (4) with n = 1. Numerical re-
sults with the ensemble numbers N = 108(×) and 1010(∗)
are compared with the theoretical one in Eq. (8) (dashed
line). The zero LE Λ̄ = Λ(0)(+) and the mean phase ve-
locity Ω(�) numerically evaluated with N = 108 are also
plotted.

in general systems as that of Eq. (1). Let us numerically
check the validity of this conjecture for the unidirection-
ally coupled Rössler system of Eq. (1). We first introduce
a continuous time system expressed as Ẋ = F(X) with the
Jacobi matrix Ĝ(X) of F(X) at X. For each of LEs, there
is an associated tangent vector called covariant Lyapunov
vector (CLV) v(t) along the orbit X(t) on the attractor satis-
fying v̇(t) = Ĝ(X(t))v(t). The corresponding LE is given by
limt→∞

1
t log |v(t)|

|v(0)| = limt→∞
1
t

∫ t
0

v(s)·Ĝ(X(s))v(s)
v(s)·v(s) ds. For each

CLV, the finite time LE can be defined as

Λt(X(0), v(0)) ≡ 1
t

∫ t

0
λ(X(s), v(s))ds (9)

with the local expansion rate

λ(X(s), v(s)) ≡ v(s) · Ĝ(X(s))v(s)
v(s) · v(s)

. (10)

In the following, we take the CLV associated with the zero
LE as v(t).

Now we apply the analysis to the system of Eq. (1),
whose zero LE is specified as follows: Among six LEs in
Eq. (1), three of them are those of the drive oscillator alone
and they are excluded. The zero LE is the second largest
one of the others. Indeed it vanishes at ε = 0 and becomes
negative for ε > 0, as shown in Fig. 3.

Equation (1) is numerically integrated in terms of the
4th-order Runge Kutta method over a given time interval
to construct a mapping system, and then the QR decom-
position method [18] and the method by Ginelli et al. [19]
are used to obtain the zero LE Λ̄ and the CLV v(t) associ-
ated with Λ̄, respectively. Figure 3 shows Λmax and Ω as
a function of ε, where t = 3000 and T = 1.8 × 108 are
used. It is well known that Ω, in the vicinity of the onset of
CPS, obeys an anomalous scaling law logΩ ∝ −(εc− ε)−1/2

for ε < εc [7]. From the plot of 1/ logΩ in Fig. 3, it is
estimated that εc ' 0.042, while Λmax jumps at ε ' 0.04
that nearly equals to εc. Furthermore, in the vicinity of the
onset of CPS, it is observed that Λmax obeys a scaling law
Λmax ∝ −

√
ε − εc for ε > εc and Λmax ' Const. for ε < εc,

which are consistent with those in Eq. (8) for the noisy sine-
circle map. As a result, it is confirmed that Λmax switches
its sign discontinuously at the onset of CPS .

Figure 3: ε dependence of Λmax(+), Λ̄(×), and Ω(∗).
−1/ logΩ(�) is also plotted to estimate the transition point
ε = εc with a fitting curve of −1/ logΩ ∝ √εc − ε (dashed
line), where it saturates for large ε due to finite T in nu-
merically evaluating Eq. (2). Dotted line shows a curve
of −

√
ε − 0.04. The inset shows ε dependence of Λ̄ for

0 < ε � εc and a solid line of −ε2.

Finally let us discuss our result in connection with unsta-
ble periodic orbits (UPOs) within the attractor. Pikovsky
et al. have formulated the CPS transition for periodically
driven chaotic oscillators as the phase locking of all UPOs
embedded in the attractor to the external periodic driv-
ing [21]. In a similar manner, the CPS transition in the case
of coupled system of two phase coherent chaotic oscilla-
tors would be formulated as follows: almost all the pairs
of UPOs among different oscillators in the absence of cou-
pling correspond to the unstable phase unlocked quasiperi-
odic orbits embedded in the attractor of the whole system,
each of which bifurcates into a pair of UPOs by a saddle-
node bifurcation as increasing the coupling strength and
then the disappearance of the last unstable quasiperiodic
orbit within the attractor leads to the CPS transition. To be
concrete, let us consider the system of Eq. (1). The unstable
quasiperiodic orbits take the signs of Lyapunov spectrum
as (+,+, 0, 0,−,−), each of which bifurcates into a pair of
UPOs with those as (+,+, 0,−,−,−) and (+,+,+, 0,−,−),
i.e., UPOs with the zero LEs of opposite signs. If the CPS
is achieved, the attractor shrinks to exclude the UPOs with
positive zero LEs from its inside. Thus the attractor con-
tains UPOs with only negative zero LEs in the presence of
CPS, while it contains UPOs with both positive and nega-
tive zero LEs in the absence of CPS.

- 242 -



Figure 4: Ω vs ε for the systems driven by chaos (+) and
UPOs of 1-period (×), 3-period (∗), and 5-period (�).

In order to assure the above picture, drive system is re-
placed by a UPO embedded in the attractor of the drive os-
cillator, andΩ is evaluated. In Fig. 4, the result for UPOs of
1-, 3-, and 5-period are shown, and they are comapred with
Ω of the original system. It shows that each Ω driven by
the UPO becomes 0 for ε < εc. The result indicates that all
of UPOs embedded in the attractor of the response system
are phase locked with a UPO of the drive system with 1-,
3-, and 5-period before the last UPO pairs in the response
and drive system being phase locked. So the UPO in the
drive system determining the CPS is something excluding
the UPO obtained here.

4. SUMMARY

In conclusion, in contrast to the other types of chaotic
synchronization, the CPS transition is characterized not by
the LE itself but by a qualitative change in the fluctuation
of LE. Namely, we found a relation between the maximal
finite time zero LE and the CPS transition. Λmax shows no
critical behavior for ε < εc, but it discontinuously switches
from a positive to zero at the CPS transition point ε = εc
and obeys a critical scaling law Λmax ∝ −

√
ε − εc for ε >

εc.
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