2009 International Symposium on Nonlinear Theory and its Applications

NOLTA'09, Sapporo, Japan, October 18-21, 2009

NOLTA! 09

A Verified Automatic Repeated Integration Algorithm based on Double
Exponential Formula

Naoya Yamanaka' Shin’ichi Oishi* and Takeshi Ogita*

tGraduate School of Science and Engineering, Waseda University
3-4-1 Okubo Shinjuku, Tokyo, 169-8555 Japan
tFaculty of Science and Engineering, Waseda University
3-4-1 Okubo Shinjuku, Tokyo, 169-8555 Japan
* Department of Mathematics, Tokyo Woman’s Christian University
2-6-1 Zenpukuji, Suginami, Tokyo, 167-8585 Japan
Email: naoya_yamanaka@suou.waseda.jp, oishi@waseda.jp, ogita@lab.twcu.ac.jp

Abstract—The double exponential formula for numer-
ical univariate integration is known to be highly efficient.
In this paper we describe an automatic repeated integration
algorithm using the double exponential formula for verified
computation. Direct product method, which is to regard 2
dimensional repeated integration as an 2-fold iterated inte-
gration and apply an univariate quadrature to each variable
separately, have been employed for getting integral value.
Numerical results are presented showing the performance
of the proposed algorithm.

1. Introduction

The work presented here is of an automatic repeated in-
tegration algorithm for verified numerical computation. We
are considering a type of repeated integration such as

by by (x)
I= f f Sfa(x, y)dyd-x. (1

~ by rba(x) g(x,y)
= = - T dydx.
aj a (x - al) a(bl - x) ﬁ(y - aZ) Y

Here, suppose that g(x,y) is total differentiable on the in-
terval field and let b,(x) satisfy ay < by(x) < oo for any
x € [a;,b1] and @, B, y be the positive constants.

For calculating the type of integration, Mori and
Muhammad proposed an algorithm [3]. Their method is
based on an analysis of indefinite integration by the double
exponential formula. However, for verified computations
significant computational effort is needed since it needs to
calculate “sine integral” Si(x) with verification.

The other obvious approach to integrating over 2-
dimensional field is to regard the integral as an 2-fold
iterated integral and apply a one-dimensional quadra-
ture to each variable separately, so-called “direct product
method”. In this paper the direct product method using the
double exponential formula have been employed for get-
ting the repeated integral value since the formula can cal-
culate an univariate integral value even if the integration
has singular points on the edge of the integral interval.

The double exponential formula for numerical integra-
tion, proposed by Takahashi and Mori, is known to be
highly efficient [4]. The idea is to transform a given prob-
lem

b To'e}
f Fi(dx = f F (@) ¢ (Ddt

through a change of variable x = ¢(f) and then apply the
trapezoidal formula to the transformed integral above. For
the transformation function ¢(¢) the double exponential for-
mula employs an appropriate double exponential transfor-
mation such as

+b
tanh (g sinh t) + aT'

More explicitly, the formula with the transformation is

b-a

Qoa,h(t) =

b M
f A@dx " fi (@aplih) @, ih).
a i=—N

Error analysis of the formula have been done in several pa-
pers [4, 5, 6]. Although in the literature various estimates
have already been given for these approximations, many
previous work were basically for examining the rates of
convergence, and several constants were left unevaluated.
Recently, however, Okayama et. al. gave error estimates
with explicit constants for verified numerical computations
[7], and moreover, Yamanaka et. al. have proposed a ver-
ified algorithm for automatic univariate integration using
the formula [8].

In this paper, we present a theorem which shows the up-
per bound of the error by the direct product method. Be-
sides we propose an automatic verified algorithm for (1) us-
ing the verified automatic univariate integration algorithm
[8]. Finally, numerical results are presented showing the
performance of the proposed algorithm.

2. Error Analysis

2.1. Errors of Double Exponential Formula

In order that the double exponential formula works ac-
curately, the transformed function by the double exponen-

- 210 -

tial transformation should be analytic and bounded on some
strip domain,

Dy=1{z€C : |Imz <d),

for a positive constant d. More specifically, the function
before the transformation is subject to be non-singular on
the following domain:

0(Pn)={zeC : ¢ @) € %)
To be more specific, we define the following function

space:

Definition 1
Let K, a1, B be positive constants. Then Lk 4, g, (¢ (%))
denotes the family of all functions f that are holomorphic
on ¢ (%) for d with 0 < d < 7/2, and satisfy the condition
that

lf@I<Klz—a™ " b—zf! 2

for all z € ¢ (Zy).

More specifically, the function before the transformation
is subject to be non-singular on the following domain:

(D) = {z €eC:¢l(ne @d}

S R =l

Yamanaka et. al. have presented the following theorem
for verified automatic integration algorithm [8]:

Theorem 1 (Yamanaka et. al. [8])

Let f € Lk, g, @(Z4)), p = min{ay, 1}, v = max{ay, B},

¢ be tolerance. Let us denote two constants C; and C, as
_ 2K(b - a)* B 2

C —_—, (= - .
! u 2 cos™B(Z sind) cos d

Let i and n be selected by

he 4 3)

2C,\’
log, (1 + —2)
&

n—[llo ﬂ—ilo (CZ)]
_hg,uh npgeegv'

Furthermore, let M and N be positive integers defined by

M=n, N=n-llogBi/a)/h] (fp=ai) @)
N=n, M=n-oglai/B)/h]l (fpu=p).

Then it follows that

< CIS.

N
I=h Y f (o(kh) ' (ki)

k=—M

Using this theorem, we can get an adequate pair of n and
h easily, so that the computational speed of a verified algo-
rithm based on the theorem is faster than that of an approx-
imation software in many cases [8].

<d}.

2.2. 2-dimensional Repeated Integration

In this section, we present our theorem for the upper
bound of the error by the direct product method using the
double exponential formula.

To state our theorem we need to introduce an auxiliary
function. Let w(x) and v(x) be

by(x) — ay V() = by(x) + ar
2 B 2

and then let us define the auxiliary function

Fx,y) = w)fo (x, w(x)y + v(x)) .

The integral field of (1) have been changed into a rectangle
field by using the auxiliary function as follows:

by b (x) by 1 _
I-= f fxy)dydx = f f o ydydc.
ay ar ay -1

Since the treatment of the integration on the rectangle field
is much easier than that on the field of (1), we show several
conditions using the auxiliary function in our theorem.

We are now in the position to state the main theorem.

w(x) =

Theorem 2

Let K, a, B, y be positive constants and d be a constant
satisfying 0 < d < m/2. let h, and h, be selected by the
formula (3) and M., Ny, M, N, by the formula (4) respec-
tively. For any % € [a;, b;], suppose that f(%, -) is holomor-
phic on ¢_; | (Z,) and satisfies the condition that

|fGa] < K@E—a)™ by -2 2+ 1P

Moreover, for any y € [—1, 1], suppose that f (-, 9) is holo-
morphic on ¢,, », (Z,) and satisfies the condition that

If@p|<Klz=a* by - P G+ 1.

Let us define £,(x,y), £ (x), Q,(x) 0)and Q as follows:

gy — S0+ V() (__ 2(x.y))
B =T T o
[0y - OB 1)

(x —apt=a(b; — 0+

N,
Oy(x) = hy Z ¢ 11 G fy(x. o-1.1(ihy))

Jj=—M,

Ny
0=t Y G (hILD (Pay h)

i=—M,

N,
O=hy D ¢, (jh)0Y.

Jj=—M,

Furthermore, let E, and E, be the constants satisfying

SEy,

1
f)y = 0,

b1 .
[#ar-0l
ay

SE}H

-211 -

then it follows that
- Ql<SE, +S,E,,

where the constants S, and W), are defined by

by
w(x)Y
S, = d
T Gmae -0
s _ls & ealh) | 11
e . I NN b
5, (0-11(hy) +1)
Proof.
- Q|

w(x)7g(x,y)
a)'=2(by —)Py + DY

w(x)”

o (x—a)=e(b; -)P
8(x,y)

1~
[L G+

b w(x)” 1
o (x—apt=e(b; - x0)!'# [[1 Sy y)dy = Qy} dx
O XN
o (- a)'=*(b; — x)I-#

b w(x)?

1
o G a) -0 [s - 0

S "o)
—y (f ij (-x)d-x - xjy)
ap

dydx — Q‘

by 1
- j(; I] (x—
by

Qy + Qy dx - Q‘

_Q‘

¢\ 1(hy)
+

hy

1
=, (@11 Ghy) + 1)
<S(E,+S,E,

3. Proposed Algorithm

In this section, we give an automatic repeated integration
algorithm with verification based on Theorem 2.

Algorithm 1
Input: ay, az, b1, br(x), g(x,y), @, 8,y and tolerance €.
Output: an interval whose diameter is equal to &.

Step 1 Calculate S ,, S, with verified computation.

Step2 Set E, and E, from S, S and &.

Step 3 Set d and calculate K on the integral field.

Step 4 Calculate i, and h, by (3) and N,, M,, Ny, M, by

(4) respectively.

Step 5 Calculate Q with verified computation using a pri-
ori error algorithm for rounding error. See Ap-

pendix about the a priori error algorithm.

Step 6 Output an interval [Q — &/2, O + &/2].

4. Numerical Result

In this section, we present the numerical experiments.
These experiments have been done under the following
computer environment: Linux (Fedora8), Memory 8GB,
Intel Core 2 Extreme 3.0GHz (Use 1 Core Only), GCC
4.1.2 with CRlibm 1.0 beta (CRlibm is used to satisfy (5)).

Here, we compare the following two algorithms on au-
tomatic integration:

(A) (Approximate) Automatic integration algorithm by the
direct product method based on a software developed
by T. Ooura [10]. The software is for univariate inte-
grations and based on the double exponential formula.

(B) (Verified) Proposed algorithm (Algorithm 1)

Remark 1

Unfortunately, since we could not find C file of (A), we did
our best to make it based on the software, equally to the
proposed algorithm as much as possible.

Example I~ I; = f f exp (xy)
Example2 I, = f f sm(x i y)d dy
xS y 7

We present a comparison of the execution time of (A)
and (B) for I; and I, when the tolerance has become tighter
gradually on Figure 1 and 2 respectively.

—e—(A) Approximate Algorithm|
—+— (B) Verified Algorithm

1 2 3 4 5 6 7 8 9 10
Relative Tolerance [107%]

Figure 1. Numerical result of Example 1

It can be seen form these figures that the execution time
of (A) are almost the same compared with that of (B). From
the results, we found that in both examples our verified al-
gorithm is in fact comparable to the approximation algo-
rithm in terms of the computational time.

Acknowledgments

The authors wish to express their gratitude to Mr.
Tomoaki Okayama, graduate student, The University of
Tokyo for his kind advice to this series of works.

-212 -

0.035

—e— (A) Approximate Algorithm|
—+— (B) Verified Algorithm

0.031

0.0251

o
Q
N

0.0151

Execution Time [s]

o
o
2

=3
Q
=1
a

o

H
~
®
IS
ol
)
~
®

Relative Tolerance [107%]

Figure 2. Numerical result of Example 2

References

[1] P.J. Davis and P. Rabinowitz: Methods of Numerical
Integration, Academic Press, New York, 1975.

[2] S.Haber: Numerical Evaluation of Multiple Integrals,
SIAM Review, 12 (1970), 481-527.

[3] M. Mori, M. Muhammad: Calculation of iterated in-
tegrals by double exponential transformation, Trans-
actions of the Japan Society for Industrial and Ap-
plied Mathematics,13, 4 (2003), 485-493. (Japanese)

[4] H. Takahashi, M. Mori: Double Exponential For-
mulas for Numerical Integration, Publ. RIMS, Kyoto
Univ, 9 (1974), 721-741.

[5] M. Sugihara: Optimality of the double exponential
formula, Numerische Mathematik, 75 (1997), 379—
395.

[6] K. Tanaka, M. Sugihara, K. Murota, M. Mori: Func-
tion classes for double exponential integration formu-
las, Numerische Mathematik, 111 (2009), 631-655.

[7] T. Okayama, T. Matsuo, M. Sugihara: Error Esti-
mates with Explicit Constants for Sinc Approxima-
tion, Sinc Quadrature and Sinc Indefinite Integration,
METR2009-01, The university of Tokyo, 2009.

[8] N. Yamanaka, T. Okayama, S. Oishi, T. Ogita: A fast
verified automatic integration algorithm using dou-
ble exponential formula, RIMS Kokyuroku, No.1638,
146-158, 2009.

[9] Correctly Rounded mathematical library
http://lipforge.ens-lyon. fr/www/crlibm/

[10] Ooura’s Mathematical Software Packages
http://www.kurims.kyoto-u.ac. jp/ ooura/

Appendix. A Priori Error Algorithm for Rounding Er-
ror

In verified numerical computations, all rounding errors
that occur throughout the algorithm must be taken into ac-
count. Although the rounding errors can be counted by
interval arithmetic, it is much slower than pure floating-
point arithmetic. Moreover it is not until all calculations
have done by interval arithmetic that we could get the up-
per bound of rounding errors.

To avoid these problems, we adopt an algorithm of
calculating a priori error bounds of function evaluations
using floating-point computations. This algorithm cal-
culates a global constant & for any a < x < b s.t.
max,<y<p [tes — f(x)| < &, which res denotes the approxi-
mate value of f(x). In the case that some numerical algo-
rithm computes the same function with a number of dif-
ferent points, we can expect the algorithm with the a pri-
ori error algorithm to become faster than that with interval
arithmetic, because the evaluations of the function are exe-
cuted by pure floating-point operations.

Consider the binary operation Z = g (%,). Denote ¥ and
§ in the intervals I, and I, by approximate values of x and
yin I, and I, respectively. Suppose |x — %| < &, [y =3 <
&, hold. In addition, assume the following inequality is
satisfied:

&)

Then, the following inequality holds for z € I: |z-7Z| <
Dyl ex + |Dy| g, + |I| ey. Here, let us suppose the interval

IZ—gE I < g% Pl en.

I, holds I, © {g(x, ylxel,ye Iy}, and intervals Dy, D,
hold

0 0
D, >{ Xy xel.yelt, Do By | xel,y
ox Oy

We make the pair (I, €) as

I : An input interval into the operation

& : Collected errors until the operation,

and define every operation for the pair.

With bottom-up calculation by recursive use of the de-
fined operation, we can get an upper bound of rounding er-
rors when evaluating a point of a function in floating-point
arithmetic.

Algorithm 2

Computation of an a priori error algorithm of rounding
errors when evaluating f(£) in floating-point arithmetic
(@a<&é<b, £E€P).

Step 1 Set an interval I = [a, b].

Step 2 Make a pair x = (1, 0).

Step 3 Calculate y = f (x) with the pair.

Step 4 Output the second value g, of y.

- 213 -

	Navigation page
	Session at a glance
	Technical program

