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Abstract—The synaptic modifications are considered to
play an important role in forming the neural network by
following plasticity rules. According to electrophysiolog-
ical measurements, synaptic modifications follow spike-
timing dependent plasticity (STDP) and synaptic weights
have a unimodal distribution with a nonzero mode and a
long-tail. However, the shape of the biologically observ-
able distribution is far from that of the distribution derived
theoretically by the STDP model. This difference implies
existence of other plasticity rules modifying the synaptic
weights. Morphological observations can obtain the long-
term time courses of the sizes of the individual dendritic
spines, which are strongly related to the synaptic weights.
According to the observations, synaptic weights are contin-
uously shuffled by fluctuation. Is the fluctuation the source
of the synaptic weight distribution? This paper quantita-
tively examines the STDP model combined with two fluc-
tuations; the activity-dependent fluctuation and the intrinsic
fluctuation. This paper demonstrates that the STDP with
the fluctuations agree with various features of biological
neural networks; the synaptic weight distributions, and the
state dependence of the changes. This result is a key to
revealing mechanism of development of neural networks.

1. Introduction

Synaptic connections between neurons are widely con-
sidered to play an important role in information process-
ing in human brain [1–4]. The mechanism of the develop-
ment of neural networks is key to revealing human intelli-
gence. Some experiments found that the synaptic weights
represented as excitatory post-synaptic currents (EPSCs)
are widely distributed and have a nonzero mode and a long-
tail [5–12]. Others suggest that the synaptic weight distri-
bution is monotonically decreasing, or at least has a very
small mode value [13]. On the other hand, the changes
in the synaptic weights depend on the difference between
the spike (action potential) timing of the pre- and the post-
synaptic neurons, and on the temporal amplitude of the
synaptic weight [6, 14, 15]. This plasticity rule is called
spike-timing dependent plasticity (STDP) [12,14–20]. Var-
ious formulations of the STDP models have been presented
according to experimental results, biological limitations,

Figure 1: The concept of this paper. The short-term synap-
tic weight changes ∆W induced by the spike-timing depen-
dent plasticity (STDP) depend on the timing difference ∆t
of the neurons’ spikes and the temporal amplitudes W of
the synaptic weights (see the left half). If the STDP me-
diates the synaptic weights W, it can derive the synaptic
weight distribution P(W) similar to those obtained from bi-
ological experiments (see the right half). Actually, the ex-
isting STDP models cannot [20].

and information theory. The multiplicative STDP agrees
with the biological STDP on the spike-timing dependences
and the state dependences [16]. However, unfortunately,
the synaptic weight distribution derived theoretically from
the multiplicative STDP is very narrow and is not con-
sistent with biological synaptic weight distributions [20].
Another STDP model called log STDP derives a distribu-
tion similar to a biological one [20], but it does not agree
with the biological STDP on state dependences [15, 16].
The conflict between the change and the distribution sug-
gests the existence of another factor modifying the synaptic
weights (see Fig. 1).

Recently, morphological observations found that the
sizes of dendritic spines change gradually and continu-
ously [21–23]. This plasticity rule is called spine volume
plasticity in this paper. The spine volume plasticity derives
a unimodal distribution with a nonzero mode and a long-
tail of the spine volumes. Remarkably, even after the action
potentials are blocked by drug, the spine volumes are still
varied and form a monotonically decreasing distribution.
Since the spine size is strongly related to the amplitudes
of the evoked mEPSCs, these results suggest the existence
of the synaptic weight changes independent to the action
potentials, i.e., the intrinsic plasticity, and the shape of the
synaptic weight distribution depending on the intensity of
the action potentials.
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The existing STDP models do not take into account the
intrinsic plasticity and the intensity dependences of the
synaptic weight distribution. This paper presents a novel
framework of synaptic plasticity called fluctuation STDP,
and demonstrates that the fluctuation STDP is consistent
with various datasets concerning the synaptic weights; the
amounts of changes induced by the biological STDP [15,
16] and the shapes of synaptic weight distribution [21, 22].

2. Models and Methods

2.1. Fluctuation STDP
This section presents fluctuation STDP, but first intro-

duces a common form of the spike-timing dependent plas-
ticity (STDP). When the timing tpre of a pre-synaptic action
potential precedes the timing tpost of a post-synaptic action
potential, i.e., ∆t = tpre − tpost < 0, the synaptic weight W
is potentiated immediately at the time tpost. In other words,
the long-term potentiation (LTP) is induced. In the case of
∆t > 0, the synaptic weight W is depressed immediately
at the time tpre. In other words, the long-term depression
(LTD) is induced. The synaptic plasticity described above
is called STDP and is expressed as the following common
form [6, 14, 15]:

W ← W + ∆W(W,∆t),

∆W(W,∆t) =

+A+(W) exp
(
− |∆t|
τ+

)
if ∆t < 0

−A−(W) exp
(
− |∆t|
τ−

)
if ∆t > 0,

(1)

where ← implies “is updated to”, and A+(W) and A−(W)
are functions determining the amplitudes of the LTP and
the LTD, respectively. The fluctuation STDP employs the
following amplitude functions A+(W) and A−(W):

A+(W) = c+ + νpW, A−(W) = c−W + νpW, (2)

where νp ∼ N(0, σ2
p) and “∼” implies “follows”. These

formulations are the same as the multiplicative STDP [16].
When the pre-synaptic neuron elicits an action potential,
the synaptic weight W is updated as:

W ← W + ν f ,

where ν f ∼ N(0, σ2
f ). This phenomenon is called activity-

dependent fluctuation in this paper. The activity-dependent
fluctuation is assumed to be disrupted by NMDA receptor
blockers just like the STDP. In addition, independently of
pre- and post-synaptic activities, the synaptic weight W is
updated as:

W ← W + (S̃ W + s̃)νs,

where νs ∼ N(0, 1). This updating can be expressed alter-
natively as the stochastic differential equation (SDE). This
phenomenon is called intrinsic fluctuation in this paper, and
is the same as the intrinsic plasticity in the spine volume
plasticity [21, 22]. This phenomenon is not disrupted by
NMDA receptor blockers in contrast to the STDP and the
activity-dependent fluctuation.

For comparisons, this section introduces other formula-
tions of the STDP models. One of the most simple formu-
lations is the additive STDP [16,20], which is expressed by
using the common formulation shown in Eq. (1) as

A+(W) = c+ + νp, A−(W) = c− + νp,

where νp ∼ N(0, σp). The multiplicative STDP [16] was
designed according to the electrophysiological measure-
ments [15], and is expressed as the formulation shown in
Eq. (2). The log STDP [20] was designed to lead a synaptic
weight distribution similar to a log-normal distribution [9].
The formulation is omitted.

Throughout this paper, the following parameter values
for the temporal window are used: τ+ = 17 [ms], τ− =
34 [ms]. The parameter values shown in the original study
[16] used for the multiplicative STDP are adjusted accord-
ing to the electrophysiological measurement [15] in the
simplified condition of τ+ = τ− = 20 [ms]. All the param-
eter values are adjusted once again under the condition of
τ+ = 17 and τ− = 34 [ms]. The value of σn is set to the half
of the original study because of the existence of the intrin-
sic fluctuation. The parameter values used for the intrinsic
fluctuation are the same as the original study [21, 22].

The activity of the post-synaptic neuron is assumed to
be almost uncorrelated to that of the pre-synaptic neuron.
This assumption is reasonable when the post-synaptic neu-
ron accepts numerous synapses. When the synapse weight
changes are enough small, they can be expressed as a
SDE [16, 18–20]. In addition, the synaptic weight distri-
butions at the steady-state can be estimated by a Fokker-
Planck Equation (FPE). The fitness of the theoretically de-
rived synaptic weight distribution with parameter values θ
to the histogram m obtained from the biological experi-
ments can be evaluated as a log-likelihood function L(θ; m).
The parameter values θ can be optimized by maximizing
the log-likelihood function L(θ; m) by using a random op-
timization [24].

2.2. Datasets
The first dataset obtained from rat hippocampal slices

by the morphological observations [21] contains two his-
tograms of synaptic weights. One histogram is obtained
from groups under a natural condition (control groups) and
shows a unimodal distribution with a nonzero mode and
a long-tail. The other histogram is obtained from rat hip-
pocampal slices which have the NMDA receptors and/or
Na+ channels blocked by drug, and is monotonically de-
creasing, In this case, the synaptic weight changes depen-
dent on the NMDA receptors and the action potentials, i.e.,
STDP and activity-dependent fluctuation, are disrupted. In
contrast, the synaptic weight changes independent to them,
i.e., intrinsic fluctuation, still occur. The synaptic weights
are measured as spine volumes in cubic micrometer (µm3).
The conversion coefficient k from EPSC [pA] to spine vol-
ume [µm3] is assumed to 8.0 × 10−4 in this paper.
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Figure 2: The synaptic weight distributions P∞(W; θ) are de-
rived from the STDP models. (left) These shapes derived from
the fluctuation STDP depend on the action potential probability
f . (right) These shapes derived from the other STDP models do
not depend on the action potential probability f .

The second dataset obtained from rat hippocampal slices
by the electrophysiological measurements [15] contains the
amounts ∆W of the changes in the synaptic weights W after
the repeated STDPs when the initial synaptic weights are
varied, i.e., the state dependence of the STDP. The synaptic
weights are measured as PSCs in picoampere (pA).

3. Results

3.1. Activity-Dependence of Distribution
In case of the fluctuation STDP, the second moment of

the SDE contains the terms of zeroth, first, and second or-
der with respect to the action potential probability f , where
they correspond to the intrinsic fluctuation, the activity-
dependent fluctuation, and the STDP. In contrast, the first
moment only contains the term of second order correspond-
ing to the STDP. Thus, according to the FPE, the synap-
tic weight distribution P∞(W; θ) derived from the fluctu-
ation STDP depends on the action potential probability
f . When the action potential probability f is nearly zero,
only the term of zeroth order, i.e., the intrinsic fluctuation,
has effect, and the synaptic weight distribution P∞(W; θ)
is monotonically decreasing with the increasing synaptic
weight W. When the action potential probability f is small,
the term of first order, i.e., the activity-dependent fluctua-
tion, is dominant over the diffusion term, and the synaptic
weight distribution P∞(W; θ) resembles a uniform distribu-
tion. When the action potential probability f is large, the
term of second order, i.e., the STDP, is dominant over the
diffusion term, and the drift term has effect. Hence, the
synaptic weight distribution P∞(W; θ) becomes a unimodal
distribution.

On the other hand, in the cases of the additive, multi-
plicative, and log STDPs, both the first and second jump
moments contain only the terms of second order. Accord-
ing to the FPE, the synaptic weight distribution P∞(W; θ)
derived from one of the three STDP models does not de-
pend on the frequency f as depicted in Fig. 2.

3.2. Fitness to Histogram of STDP
This section compares the synaptic weight distributions

P∞(W; θ) derived from the STDP models with the his-
tograms of the synaptic weights obtained from the mor-
phological observations [21]. Since the synaptic weight
distribution P∞(W; θ) derived from the fluctuation STDP
depends on the action potential probability f as mentioned
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(a) control groups. (b) the NMDA receptors blocked.

Figure 3: The synaptic weight distributions P∞(W; θ). The his-
tograms are obtained from the morphological observations [21].
The curves are derived from the STDP model. The black solid
line, the black dotted line, the gray line, and the gray dotted line
correspond to the fluctuation STDP, the additive STDP, the mul-
tiplicative STDP, and the log STDP. (a) The left figure shows the
case of the control groups. (b) The right figure shows the case
that the NMDA receptors are blocked, i.e., the action potential
probability f = 0.

Table 1: Fitness to Histogram as Log-Likelihood Function
L(θ; m).

Histograms
Models (i) control (ii) blocked

fluctuation STDP -606 -381
additive STDP -609 -386
multiplicative STDP -1306 -685
log STDP -606 -391

in the previous section, the action potential probability f
is treated as a parameter of the fluctuation STDP hereafter.
In the case of the control groups, the NMDA receptors and
the Na+ channels are not blocked, and the action potential
probability f has a positive value. The parameter values
are adjusted as described in the previous section. Figure 3
(a) shows the case of the control groups. The fluctuation
STDP derives the synaptic weight distribution P∞(W; θ)
which is a unimodal distribution with a nonzero mode and
a long-tail and is very similar to the corresponding his-
togram. The fitness evaluated by the log-likelihood func-
tion L(θ; m) is summarized in Table 1. The additive STDP
derives a monotonically decreasing distribution P∞(W; θ)
and its shape is different from the histogram. The multi-
plicative STDP derives a unimodal distribution P∞(W; θ)
with a nonzero mode and a long-tail but its shape is very
narrow and almost different from the histogram. The log-
likelihood functions L(θ; m) of both the STDP rules are
worse than that of the fluctuation STDP. The log STDP de-
rives the synaptic weight distribution P∞(W; θ) very similar
to that P∞(W; θ) derived from the fluctuation STDP and the
histogram. On the other hand, in the case that the NMDA
receptors are blocked, the histogram of the measured spine
volumes is monotonically decreasing as shown in Fig. 3
(b). This case corresponds to the action potential proba-
bility f = 0, and the fluctuation STDP derives a mono-
tonically decreasing distribution P∞(W; θ) of the synaptic
weights. When the synaptic weight distributions P∞(W; θ)
are assumed to be derived only from the STDP models, the
synaptic weight distributions P∞(W; θ) keep their shapes
after the NMDA receptors are blocked. Hence, the multi-
plicative STDP and the log STDP derive a unimodal dis-
tribution with a nonzero mode and a long-tail as is the
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(a) fluctuation STDP [this paper]. (b) additive STDP [16, 20].
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Figure 4: The amounts ∆W of the changes in the synaptic
weights W induced by the STDP. The black triangles ▲ (The gray
triangles ▼) denote the amounts ∆W of the changes induced by
the LTPs (the LTDs) obtained from the electrophysiological mea-
surements [15]. The lines are obtained from the STDP models.
The black solid lines denote the average of the changes ∆W of the
LTPs induced by the STDP models, and the black dashed lines
denote their standard deviation. The gray solid and dashed lines
denote the case of the LTDs. The fluctuation STDP, the additive
STDP, the multiplicative STDP, and the log STDP are summa-
rized from (a) to (d).

case in the control groups. In the both cases, the synaptic
weight distributions P∞(W; θ) derived from the fluctuation
STDP are the most similar to the histograms obtained from
the morphological observations according to the similari-
ties evaluated by the log-likelihood function L(θ; m) and
summarized in Table 1.

3.3. State Dependence of STDP
The amounts ∆W of the changes in the synaptic weights

W induced by the STDP models are obtained in the same
manner as the second dataset, and are summarized in Fig. 4.
Since the initial synaptic weights are varied, the results
show the state dependence of the STDP models. As shown
in Fig. 4 (a), the amounts ∆W of the changes of both the
LTP and the LTD induced by the fluctuation STDP are
similar to those of the experimental results. The addi-
tive STDP can only agree with the average changes of the
LTPs, but causes the excessively large LTDs and the differ-
ent standard deviations. The multiplicative STDP agrees
with the electrophysiological measurements [15] as with
the fluctuation STDP. The log STDP causes the small aver-
ages and the large standard deviations in the weak synap-
tic weights, and causes the small standard deviations in the
strong synaptic weights when compared to the electrophys-
iological measurements.

4. Discussions

The multiplicative STDP derives a narrow distribution
but the histograms of the synaptic weights obtained from
the morphological observations are widely distributed. If
the STDP models derive a wider distribution, the STDP
models should have a large diffusion term or a large nega-
tive drift term when compared to the multiplicative STDP.

The additive and log STDPs try to realize such a distribu-
tion by tuning the state dependences. On the other hand,
owing to the additional diffusion terms, i.e., the activity-
dependent fluctuation and the intrinsic fluctuation, the fluc-
tuation STDP can derive such a distribution despite not tun-
ing the state dependences. In conclusion, the fluctuation
STDP can agree with the experimental results of both the
synaptic weight distributions and the state dependences in
contrast to the existing STDP models; the additive STDP,
the multiplicative STDP, and the log STDP.
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