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Abstract— Author and co-researcher have proposed the
dynamic network formation game model for modeling
complex networks. This model is based on the network
formation game which is known in the field of game the-
ory and it represents dynamical network formation pro-
cess derived by many distributed decision making by self-
interest agents. In this model, varied players’ payoff func-
tion leads players’ strategy to change, thus different out-
come networks are generated. Therefore if the payoff func-
tion can be controlled, the structure of the network formed
by a large number of players can be controlled in some de-
gree. In the event of pandemics of infectious diseases such
as COVID-19, it is important to change the structure of the
social and infection transmission network. In this article, I
examine a method for balancing individual and social ratio-
nality in social network formation using the dynamic net-
work formation game model. A payoff function reflecting
individual and social rationality is introduced, and the char-
acteristics of generated network structures are investigated
through computer simulation. The results showed that the
resulting networks tended to be unnatural networks as so-
cial networks, but by introduced payoff function, structures
with high resistance to the spread of infectious diseases
were obtained.

1. Introduction

Author and co-researcher have proposed the dynamic
network formation game model for modeling complex net-
works [1]. This model is based on the network formation
game which is known in the field of game theory and it rep-
resents dynamical network formation process derived by
many distributed decision making by self-interest agents.
Authors have already investigated what types of network
are generated by this model through computer simulations,
and shown that this model can generate the scale-free net-
works in certain conditions, which is often observed in so-
cial and technological networks. In this model, varied play-
ers’ payoff function leads players’ strategy to change, thus
different outcome networks are generated. Therefore if the
payoff function can be controlled, the structure of the net-
work formed by a large number of players can be controlled
in some degree.
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Social networks are not only information exchange net-
works among people, but also infectious disease transmis-
sion networks. Many studies on mathematical models of
infectious disease transmission have shown that the struc-
ture of the network has a direct impact on transmission ef-
ficiency. Therefore, in order to control the spread of infec-
tious diseases during the epidemic period, it is important to
change the structure of the infection transmission network
(i.e, social network) by some means.

In the case of COVID-19, which has been spreading
around the world since the beginning of 2020, governments
have attempted to control its spread by encouraging people
to change their behavior patterns and changing the struc-
ture of social networks through various programs, such as
requesting people to refrain from unnecessary and hasty
travel and to refrain from opening restaurants at night.
However, as strong infection control policies began to have
a significant negative impact on social and economic activ-
ities, and as it became clear that suppression of COVID-19
was difficult to achieve in a short term, it became neces-
sary not only to control the spread of infection, but also to
promote social and economic activities to a certain degree.

For the promotion of social and economic activities, it
is important to construct information exchange networks
among people based on individual rationality. For exam-
ple, in researches on the relationship between innovation
and social network structure, the role of nodes and links
that fill the gaps between local and dense partial networks
(known as structural holes) is considered important. Thus,
in the context of individual rationality, social members have
strong incentives to form such links. However, since social
links for person-to-person information exchange often in-
volve contact, the existence of nodes and links that fill these
structural holes can also dramatically facilitate the spread
of infectious diseases. Therefore, in the context of social
rationality, the formation of such links should be restricted.
The optimization of social network structure basically faces
such a dilemma. On the other hand, the appropriate social
network structure differs depending on the stage of spread
of the infectious disease. That is, strong control of the
spread should be prioritized during the expansion phase,
while recovery of social and economic activities should
be prioritized during the contraction phase. Therefore, ac-
cording to the target social network structure to be derived,
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it is necessary to have an optimization method for the so-
cial network structure that can control the balance between
the intensity of individual and social rationality. Further-
more, in a liberal society, the formation of social networks
is primarily based on the free will of individuals, so such a
balance control method should be implemented as policies
that reflect the optimality of social rationality in individual
decision making.

In this article, I examine a method for balancing indi-
vidual and social rationality in social network formation
using the dynamic network formation game model. First, a
payoff function reflecting individual and social rationality
is introduced. Next, the characteristics of structures of the
network generated by this model are investigated through
computer simulations.

2. Methods

2.1. Dynamic Network Formation Game Model

A model of network formation used in this article, the
dynamic network formation game model is described as
follows. In this model, at each discrete time t, undirected
and unweighted network g(t) define a strategic form game
of n players. Here n is the number of nodes of the network
g and invariant with respect to time. The set of strategies of
the n players game determines the network g(t + 1) at the
next timestep,

As for the game which played at each timestep, play-
ers are nodes who intend to improve their payoffs of next
timestep. The strategy of each player i is described as
a vector si(t) = (si1(t), . . . , si(i−1)(t), si(i+1)(t), sin(t)), where
si j(t) ∈ {0, 1} represents a link formation request of i to j.
The player i independently sets si j(t) according to change
of its payoff value with change of link i j, si j(t) is set to 1 if
it is desirable for i to add (or maintain) the link with player
j, otherwise si j(t) is set to 0. The payoff function u(g) is a
function that give a value for each player, indicating how
the network g(t) is desirable for the player. This function
has a very strong influence on the strategies of the players
and on the outcome solution network. The specifics are de-
scribed in the subsection 2.2. As for the outcome g(t + 1)
obtained by playing the game at time t, I describe about
two concepts adjacent and defeat. Two networks g and g′

are adjacent if the g′ differs only one link from g, and a
network g′ defeats an adjacent network g if either

g′ = g − i j and
(
ui(g′) > ui(g) or u j(g′) > u j(g)

)
or

g′ = g + i j and{(
ui(g′) ≥ ui(g) and u j(g′) ≥ u j(g)

)
,

except
(
ui(g′) = ui(g) and u j(g′) = u j(g)

)}
where g + i j is a network which a link i j is added to net-
work g, g− i j is a network which a link i j is removed from

network g. That is, g′ is obtained by adding a link i j to
network g that increases the payoffs of both players i and j,
or by removing a link i j that increases the payoffs of either
player i or j.

The g(t + 1) is specified deterministically among net-
works which can defeats g(t) and g(t) itself. For concrete
description of g(t + 1), two definitions ∆ui j(t + 1) and ac-
ceptable link set Lacceptable(g) are describe as follows. First,
∆ui j(t + 1) is defined as the amount of change of i’s payoff
in the case that the change of link i j occurs at time step t.
It is formulated as follows,

∆ui j(t + 1) =ui
(
g(t) + i j

) − ui
(
g(t)
)
, if i j < g(t)

ui
(
g(t) − i j

) − ui
(
g(t)
)
, if i j ∈ g(t).

Second, Lacceptable(g) ⊂ L ⊂ N × N is defined as the set of
links which are acceptable for involved players i and j. It
is formally described as follows.

Lacceptable(g) = {i j|i j < g and g + i j defeats g}
∪ {i j|i j ∈ g and g − i j defeats g}.

The link i j that changes at timestep t is described as the
link that improves payoff the most among Lacceptable(g). In
formally,

i j = arg max
i j∈Lacceptable(g(t))

∆ui j(t + 1).

The outcome network g(t + 1) is determined as g(t) + i j (if
g(t) < i j) or g(t) − i j (if g(t) ∈ i j). If there is more than one
link satisfying that, the link which involved by the node
who have the youngest ID is prior than others as a matter
of convenience.

Every process of network formation starts from the ini-
tial state of network g(0) and continues link changes. Fol-
lowing the representation manner of the dynamical system,
I consider the network g(t) at each time t as a state and
the process by this model as a state-transition process. If
the process reach to the state g(t) in which no links are ac-
ceptable, then g(t + 1) is exactly same as g(t), and the state
g(t) is described as pairwise stable which is one of solution
of the process. Another solution is described as improv-
ing cycle, which consisted by a sequence of adjacent states
{g1, g2, . . . , gK} such that each defeats the previous one and
g1 = gK .

2.2. Payoff function

I describe here a payoff function that reflects individ-
ual and social rationality. In this paper, individual ratio-
nality maximization is represented as maximization of in-
formation centrality, and social rationality maximization is
represented as minimization of the largest eigenvalue of
the adjacency matrix. Information centrality is one mea-
sure of the centrality of nodes in a network. It was first
proposed by Stephenson and Zelen as a measure to over-
come the drawbacks of betweenness centrality, namely that
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(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3(stable)

Figure 1: An example of process of the dynamic network formation game model of which parameters are n = 5,m =
5,w = 2. (a) Initial state g(0). (b) A link is removed because of payoff of right node increase. (c) A new link is added
because payoffs of the involved nodes are both increased. (d) Another link is removed. This network is pairwise stable
and this state is a solution of the process.

(a) w = 0 (b) w = 10 (c) w = 30 (d) w = 50 (e) w = 100

Figure 2: Typical solutions of the model for each w. (a) Complete network which all node pair have links between them.
(b) All node have 8 links. (c) Nodes have 3 or 4 links. (d) Nodes have 2 or 3 links. (e) Every node pair constitutes a
component of size 2 each.

only the shortest pathes are used for information propaga-
tion and that the values of propagating information are not
decayed depending on the distance between nodes [3]. It
was later redefined by Brandes and Fleischer as current-
flow closeness centrality, and a fast calculation algorithm
was proposed [2]. Information centrality is basically simi-
lar to betweenness centrality, where nodes that are on more
information transfer paths are evaluated more highly. On
the other hand, information centrality differs from between-
ness in that it considers all paths between node pairs and is
weighted by the reciprocal of the path length so that shorter
paths are evaluated more highly. Therefore, this is also sim-
ilar to closeness centrality. In this article, I adopt this infor-
mation centrality as a value reflecting individual rationality.
That is, each player decides his/her strategy so that his/her
information centrality is high in the outcome network of
next timestep. Note that I use the value of relative infor-
mation centrality (hereafter referred to as RIC), which is
normalized so that the sum of the information centrality of
all nodes is 1.

In propagation and diffusion over a network, it is known
that the larger the maximum eigenvalue λmax of the adja-
cency matrix of the network, the more efficient the diffu-
sion [4]. Therefore, considering that I want to obtain net-
works to suppress the spread of infectious diseases, I adopt
this value as a value that reflects social rationality. That is,
each player decides his/her strategy taking into account that

the maximum eigenvalue of the adjacency matrix will not
be large in the outcome network. Specifically, the payoff
function ui(g) for network g is represented as follows,

ui(g) = RICi − wλmax. (1)

Here w is a balancing parameter between individual and
social rationality. If w is 0, players will pursue only in-
dividual rationality maximization, while a large value will
cause players to adopt strategies that place more empha-
sis on social rationality. Figure 1 shows an example of the
transition process of the network formation game model.

3. Simulations and results

For every simulations, the initial network g(0) was ran-
domly generated by the G(n,m) model (called also as gen-
eralized random graph model). This model generates a net-
work by choosing uniformly at random from the collec-
tion of all networks which have n nodes and m edges, here
n = 20,m = 38 (link existence ratio 0.2). The weight w in
equation (1) is set to one of 0, 10, 20, . . . , 100.

As a result, single-state solutions, i.e., pairwise stable
networks, were obtained in all simulations. Figure 2 shows
a sample of typical solutions for each of the weights w =
0, 10, 30, 50, and 100. When w = 0, only the information
centrality matters completely, so there is a strong tendency
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Table 1: Distribution of average degrees of the outcome network for each w. This result was obtained for 50 random
initial networks.

[0.0,
0.5)

[0.5,
1.0)

[1.0,
1.5)

[1.5,
2.0)

[2.0,
2.5)

[2.5,
3.0)

[3.0,
3.5)

[3.5,
4.0)

[4.0,
4.5)

[4.5,
5.0)

[5.0,
5.5)

[5.5,
6.0)

[6.0,
6.5)

[6.5,
7.0)

[7.0,
7.5)

[7.5,
8.0)

[8.0,
8.5)

[8.5,
9.0)

[9.0,
9.5)

[9.5,
10.0)

[10.0,
10.5)

[10.5,
11.0)

[11.0,
11.5)

[11.5,
12.0)

[12.0,
12.5)

[12.5,
13.0)

[13.0,
13.5)

[13.5,
14.0)

[14.0,
14.5)

[14.5,
15.0)

[15.0,
15.5)

[15.5,
16.0)

[16.0,
16.5)

[16.5,
17.0)

[17.0,
17.5)

[17.5,
18.0)

[18.0,
18.5)

[18.5,
19.0]

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.90

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.06 0.00 0.00 0.00 0.00 0.80 0.06 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.00 0.00 0.00 0.04 0.06 0.00 0.00 0.00 0.06 0.02 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

30 0.00 0.00 0.08 0.02 0.00 0.00 0.86 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

40 0.00 0.00 0.10 0.00 0.00 0.12 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 0.00 0.00 0.26 0.02 0.50 0.20 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

60 0.00 0.00 0.68 0.04 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

70 0.00 0.00 0.92 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

80 0.00 0.00 0.86 0.08 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

90 0.00 0.00 0.90 0.06 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100 0.00 0.00 0.84 0.14 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ave. degree

w

to form complete networks in which links exist between
all nodes. As the value of w increases, the average degree
tends to decrease. In all cases, the degree of each node was
almost the same or similar. In the case of w = 100, many
of the nodes were split into connected components of size
2 in many cases. Table 1 shows the distribution of average
degrees in the outcome network for the 50 random initial
networks. The rows show each value of w, the columns
show each average degree, and each cell shows the propor-
tion of occurrences. For example, for outcome networks
with w = 0, the proportion of occurrences with a average
degree of [18.5, 19.0] was 0.9, for [13.5, 14.0) it was 0.02,
and for [15.0, 15.5) it was 0.08. As shown also in the ta-
ble, the average degree in the generated network tends to
decrease as the value of w increases, and for w = 70 and
above, the network with an average degree of 1 is pairwise
stable in many cases.

Real-world social networks are considered to be scale-
free and small-world. Scale-free property means that there
is a large gap in the degree of each node and the degree
distribution follows a power law, while small-world prop-
erty means that localized, densely connected small groups
are interconnected by sparse links. On the other hand,
the outcome networks obtained from the simulations often
have almost constant values for node degrees. The possible
causes of this difference are as follows. When a node has
a large degree, the maximum eigenvalue of the adjacency
matrix of the entire network becomes large, allowing other
players to form the same number of links as the node with
the largest degree to increase their own information central-
ity without having a negative impact. Therefore, such links
are more likely to be formed. This is the effect of adding a
penalty term representing social rationality to equation (1),
and in fact resulting networks have low maximum eigenval-
ues, however they tend to be unnatural networks as social
networks. Similarly, clustering properties tended to be very
small than actual social networks. This is due to the use of
information centrality for individual rationality, which as-
signs low values to links with nodes that are already close
to each other.

As a future issue, it is necessary to brush up the model
so that it can represent more natural social network forma-
tion, and it is also necessary to examine the appropriate set-

ting of the payoff function. It is also necessary to examine
an appropriate method for determining w, a parameter that
balances individual and social rationality. Furthermore, it is
assumed that each player can observe the entire social net-
work, but in reality, players often only know the situation
in their own neighborhood, so it may be necessary to mod-
ify their strategy decisions. Although there are still many
issues to be addressed, the method of inducing social net-
works formed based on selfish and decentralized decision
making to desiable structures by setting an appropriate pay-
off function is expected to make a significant contribution
to policy making, especially during the spread of infectious
diseases. I hope that further studies will be conducted.
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