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Abstract—A large number of meta-heuristic algorithms
have been developed for solving various kinds of combi-
natorial optmization problems. In order to improve the
searching ability, we consider that nonlinear dymanics is
applied to such algorithms. In this article, we propose
an improved ant colony optimization algorithm. The ant
colony optimization system can be classified into a kind of
multi agent system. If each agent has nonlinear dynamics,
the system may improve the ability to search the optimum
solution. By using our proposed system, we try to solve
quadratic assignment problems.

1. Introduction

Searching for the optimal value of the evaluation func-
tion to various problems is very important in the engineer-
ing field. Such problem is called optimization problems. In
order to solve such optimization problems, various kinds of
algorithms have been proposed.

In generally, to search an optimal solution of such op-
timization problems is required a lot of computation time.
Therefore, in order to search speedy, many heuristic op-
timization algorithms have been proposed, for example,
Simulated Anneling, Neural Networks, Genetic Algorithm,
Genetic Programming, Particle Swarm Optimization, and
so on.

Ant Colony Optimization (abbr. ACO), which was
originally proposed by M.Dorigo[1],[2] which is called
”Ant System”, is one one of such heuristic algorithms.
In Ref.[2], the Traveling Salesman Problem, which is a
very famous combinatorial optimization problem, is solved
by Ant Colony System[2]. The result indicates the Ant
Colony System exhibits effective peformance for local
optimization[2]. In this article, we consider the system
which based on the Ant Colony System, and we call the
system ”ACO”.

The ACO is based on the studies of Swarm
Inteligence[3], is simulating an action which searches
for the bait of the ant. The principle of ACO algorithm is
based on the way ant searches for bait and finds their way
back to the nest. The ant leaves a chemical which is called

”pheromone” on the graoud. The pheromone configures
a trail which leads ants toward to the bait. If an ant finds
the shortest trail from the nest to the bait, other ants will
follow the trail, and such trail means an optimal solution.

The ACO is very powerful searching algorithm to search
an optimal combination which gives a optimal value of its
coressponding evaluation function. For this system, each
ant can be regarded as an agent, therefore, this algorihm
consists with a lot of agents, and the swarm of agents search
the optimal combination. By using this algorithm, we try
to solve quadratic assignment problems.

2. Quadratic assignment problems

Quadratic Assignments Problems (abbr. QAP) have
been introduced by Koopmans and Beckman in 1957[4] is
one of combinatorial optimization problems.

The QAP can be described as the problem of assigning a
set of facilities to a set of location with given distance be-
tween the locations and given flows between the facilities.
In particular, the problem consists with n facilities and n lo-
cations. Figure 1 shows this situation for n = 4. In Figure
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Figure 1: An example of distance and flow (n = 4)

1, the left figure denotes the location and each number indi-
cates the distance between the location. Also, each number
in the right figure denotes the flow between the facilities.

Figures 2 and 3 show examples of assignments of the fa-
cilities. The sum of the products of the flows and distances
for the assignment of Figure 2 is 218. On the other hand,
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the sum for the assignment of Figure 3 is 180. In this case,
the assingnment of Figure 3 is an optimal solution which
gives the minimal sum.
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Figure 2: An assignment example.
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Figure 3: An optimal assignment example.

We can consider two n × n matrices A = [ai j] and
B = [bi j], where ai j denotes the flow between facilities i
and j and bi j denotes the distance between location i and j.
The purpose of the problem is to find an assignment such
that the sum of the products of the flows and distances is
the minimal, therefore the objective function f (π) of the
problem can be described as

min
π∈Π(n)

f (π) =
n∑

i=1

n∑

j=1

ai jbπiπ j , (1)

where Π(n) is the set of permutation of n elements.
For the problem size n, the corresponding space of so-

lution of the permutation is given by n!. The QAP can be
classified into NP-Hard problem, therefore, to serach an
optimal solution is required a lot of computation time.

Only few combinatorial optimization problems can be
solved exaxtly for relatively large instances. QAP, how-
ever, is a quite hard to solve, because the QAP instance of
size larger than 20 are considered intractable. The use of
heuristic algorithm for solving large QAP instance is cur-
rently the only practicable solution.

3. Ant Colony Optimization

The algorithm of Ant Colony Optimization (abbr. ACO)
is simulating an action which searches for the bait of the
ant, and is one of meta-heuristics algorithm which searches
an optimum solution of given objective function. The prin-
ciple of this algorithm is based on the way ant searches for
bait and finds their way back to the nest. The ant leaves
a chemical which is called ”pheromone” on the graoud.
A trail is configured by the pheromone. The pheromone
trail plays to guide other ants toward to the bait from the
nest. The amount of the pheromone depends on the dis-
tance between the nest and the location of the bait be-
cause the pheromne has a volatile characteristic. Since
the pheromone of the shortest trail will become strong, the
most of ants select such same trail. As for such strong trail,
the possibility to be a best trail is high. The algorithm of
ACO uses such property of the action of ants. In this arti-
cle, we consider that we try to solve QAP by using ACO.

Here, we consider a complete graph G which consists
with n verteces Vi as shown in Figure 1.
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Figure 4: A complete graph (n = 6)

Because the graph G is the complete graph, the number
of edges of the graph G is n(n − 1)/2. Each edge denotes
Ei j which means the edge between i-th vertex Vi and j-th
vertex. In order to solve QAP, each element of the distance
matrix B of QAP is allocated on the corresponding edge of
the graph. Also, the pheromone τi j is arranged on the cor-
responding edge Ei j. ACO algorithm is applied to the such
graph. The algorithm select a trail where an ant visits all
vertices only once. In other word, this algorithm outputs a
visit order of the vertices. It creates the permutation of the
flow of QAP using the visit order, and it computes the eval-
uation value of the trail of the ant. The visit order denotes
a permutation of the flow, then πi = 1 means that the first
visit vertex is i-th vertex. An example of a visit order of 6
verteces graph is shown in Figure 5. In the case of Figure
5, the permutation is given as π = (1, 3, 2, 4, 6, 5).

Since the selection of each edge depends on the amount
of pheromone on the trail, the most important component of
ACO is the management of the amount of pheromone trail.
Initially no information is contained in the pheromone trail,
meaning that all pheromone τi j have an identical value, e.g.
τi j = 1.
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Figure 5: An example of a tour. π = (1, 3, 2, 4, 6, 5)

When the m-th ant locates on the i-th vertex, the prob-
ability of the ant visits the j-th vertex which is allowed to
move from the i-th vertex, Pm

i j, is calculated as

Pm
i j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τi j(ηi j)β∑

k∈Ni

τik (ηik)β
, if j ∈ Nm

i

0, otherwise

(2)

where Nm
i means a set of verteces never accessed of m-th

ant from i-th vertex. When the ant visits the i-th vertex to
the πi-th, ηi j is a parameter which associated with the cost
between the i-th vertex and the j-th vertex.

ηi j =
1

ai jbπiπi+1
. (3)

β > 0 is a parameter the relative importance of pheromone
versus the cost.
η is adopted as a heuristic parameter, and the parameter

improves the searching performance.
Based on above probability, the state transition rule is

determined. In the state transition rule of the ACO, two
rules are existed. One is an exploitation, other one is a
biased exploration. The m-th ant located on the i-th vertex
selects the j-th vertex to move to by applying the rule given
by

j =

⎧⎪⎪⎨⎪⎪⎩
arg max

k∈Ni

Pm
ik if q ≤ q0(exploitation)

J otherwise (biased exploration)
(4)

where q is a number which is generated by logistic map, q0

is a thereshold ( 0 ≤ q0 ≤ 1 ), and J is a random variable in
Nm

i selected according to the probability distribution in (2).
Next, we consider the pheromone updating rule. In this

article, we consider two pheromone updating rules.
The fisrt updating rule is that the pheromone is made

allocation to all edges according to the evaluation value.
Once all ants have build their tour, pheromone is updated
on all edges according to

τi j ← (1 − α)τi j +

M∑

k=1

Δk
i j (5)

where M denotes the number of ants, and Δk
i j means an

increment corresponding to each ant which propotionates
to its evaluation value.
Δk

i j is defined as

Δk
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γk
M∑

j=1

γ j

·
α

n∑

i=1

n∑

j=1

τi j

n
if (i, j) ∈ tour done by ant k

0 otherwise
(6)

where, γk means a parameter for the k-th ant which is de-
termined by its evaluation value.

The γk is given by

γk =

Ek −min
j

E j

max
j

E j −min
j

E j
(7)

where, Ek denotes an evaluation value for the k-th ant
which is calculated as

Ek =

n∑

i=1

n∑

j=1

ai jbπk
i π

k
j

(8)

The second updating rule is that the pheromone is made
allocation to edges which comprise the most effective tour.

τi j ← (1 − α)τi j + Δi j (9)

Δi j is defined as

Δi j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
n∑

i=1

n∑

j=1

τi j

n
if (i, j) ∈ tour done by ant k, and

k = arg max
j

E j.

0 otherwise
(10)

Note that, using above pheromone updating rules, the
total amount of the pheromone must be a constant, e.g n×n.

4. Simulation

First, we confirm the effect of the parameter α which
means an attenuation coefficient. Most of the test prob-
lems can be found in QAPLIB[5]. We use Nug14 in the
QAPLIB for our simulation. Table 1 shows the result of
the numerical experiment. The upper limit of the iteration
in the experiments is 100000. ”iteration” in Table 1 means
the number of iterations when the best evaluation value is
obtained. Therefore, if the ”iteration” is small, the system
converges a steady state speedy, and the parameter α con-
trols the convergence speed. It, however, is said to be the
search of the optimal solution is insufficient in converging
too early. In order to search efficiently, α = 0.9999 is ap-
plied to simulations hereafter.
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Table 1: The effect of the parameter α for Nug14 in
QAPLIB[5]. ”iteration” means the numbet of iterations
when the best evaluation value is obtained.

min
k

Ek (iteration)

α β = 0.00
0.20000 1138 ( 10)
0.10000 1072 ( 35)
0.01000 1064 ( 477)
0.00100 1040 ( 5818)
0.00010 1040 (35524)
0.00001 1056 (74335)

Next, we consider the effect of the parameter β and the
updating rule. First, we consider the the rule is that the
pheromone is made allocation to all edges acoording to
the evalution value. Table 2 shows the result that Eq.(5)
is applied for the updating rule. As shown in Table 2, the

Table 2: The effect of the parameter β for the first updat-
ing rule that the pheromone is made allocation to all edges
acoording to the evalution value.

min
k

Ek (iteration)

β α = 0.0001 α = 0.0100
0.0 1056 (74335) 1040 (7785)
0.1 1058 (57610) 1044 (6516)
0.2 1064 (48713) 1050 (6339)
0.3 1050 (36617) 1056 (4267)
0.4 1050 (36617) 1080 (1838)
0.5 1050 (36617) 1094 (2749)
0.6 1050 (36617) 1094 ( 113)
0.7 1056 (78873) 1096 (1113)
0.8 1056 (78873) 1108 ( 968)
0.9 1064 (29771) 1104 ( 425)
1.0 1058 (21872) 1104 ( 425)
1.5 1074 (36080) 1118 ( 411)
2.0 1086 ( 6639) 1128 ( 50)

system cannot find an optimal solution within 100000 iter-
ations. In this case, the system exhibits the most effective
result around β = 0.5. Next, we consider the case where
the updaing rule is that the pheromone is made allocation
to edges which comprise the most effect tour. In this case,
the system can find the optimal solution which denotes the
boldface number. These results indicate that the second up-
dating rule is more efficient than the first one. According to
Ref[2], the heuristic function η is fundamental in making
the algorithm find good solutions in a reasonable time. The
result seems that β = 0.5 is the most effective value. Note
that, η is configured by the corresponding cost of a part of
trail in this article. The system, however, may exhibit more

Table 3: The effect of the parameter β. Applying update
rule is the pheromone is made allocation to edges which
comprise the most effect tour. The boldface denotes it is
the optimal value.

min
k

Ek (iteration)

β α = 0.0001 α = 0.0100
0.0 1040 (35524) 1064 (477)
0.1 1014 (30493) 1044 (251)
0.2 1024 (20592) 1024 (414)
0.3 1024 (26343) 1040 (419)
0.4 1014 (37176) 1044 (278)
0.5 1014 (38543) 1024 (339)
0.6 1014 (39019) 1050 (211)
0.7 1014 (39019) 1040 (368)
0.8 1024 (27074) 1050 (302)
0.9 1024 (20375) 1050 (267)
1.0 1024 (18015) 1056 (395)
1.5 1050 (15071) 1096 (190)
2.0 1074 (14877) 1096 (227)

remarkable performance if η can be determined appropriate
function. Finding such function is a future problem.

5. Conclusion

The ACO consists with many control parameter, then we
confirmed the effects of each parameter, and we proposed
the effective value of these parameters. The most of other
proposed ACO uses another heuristics for local search[2].
Correspondigly, note that our system uses only ACO.

References

[1] M. Dorigo, V. Maniezzo, and A. Colorni, ”The Ant
System: Optimization by a colony of co-operating
agents,” IEEE Trans. Systems, Man and Cybernetics −
Part B, Vol.26, No.1, pp.1-13, 1996.

[2] M. Dorigo, L.M. Gambardella, ”Ant Colony System:
A Cooperative Learning Approach to the Travelling
Salesman Problem,” IEEE Trans. Evolutionary Com-
putation, Vol.1, pp.53-66, 1997.

[3] E. Bonabeau, M. Dorigo, and G.Theraulaz, ”Inspira-
tion for Optimization from Social Insect Behaviour,”
Nature Vol.406, pp.39-42, 2000.

[4] T.C. Koopmans, and M.J. Eckmann, ”Assignment
Problems and the Location of Economic Activities”,
Econometrica, vol.25, pp.53-76 , 1957.

[5] R.E. Burkard, E. Cela, S.E. Karisch and F.
Rendl,”QAPLIB - A Quadratic Assignment Problem
Library, http://www.seas.upenn.edu/qaplib/

- 226 -


	Navigation page
	Session at a glance
	Technical program

