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Abstract—Mixed-mode oscillations (MMOs) have a
distinctive waveform in the time series, and consist of
large amplitude excursions and small peaks. The MMO-
incrementing bifurcations (MMOIBs) trigger an MMO
sequence that is followed by another type of an MMO
sequence. In this study, we observe MMOIBs in two-
coupled Bonhoeffer-van der Pol (BVP) oscillators con-
nected by a resistor by changing a coupling factor. The pa-
rameter values of one of the BVP oscillators chosen near
a supercritical Andronov-Hopf bifurcation (AHB) point in
the absence of connection, whereas those of the other BVP
oscillator are chosen near a subcritical AHB point.

1. Introduction

MMOs are nonlinear phenomena, which consist of L
large amplitude excursions and s small peaks in the ob-
served time series. To identify various MMOs, we use
the notation “Ls”. Although the definition of MMOs ap-
pears to be ambiguous, the study of MMOs is significant
because they are universally observed in slow–fast dy-
namics. Therefore, MMOs were discovered and analyzed
within various systems, and have been a subject of inten-
sive research [1–6]. Moreover, MMO-incrementing bifur-
cation (MMOIIB) triggers an MMO sequence that, upon
varying a parameter, is followed by another type of MMO
sequence. That is, MMOIBs that consist of [Ls, Ĺś × n]
(n = 1, 2, 3, . . .) occur many times successively. The com-
plex bifurcations were often observed in actual chemical
experiments [7, 8]. Although the generation of MMOIBs
appears to be universal in a class of MMOs generating dy-
namics, the governing equations that describe the chemi-
cal experiments may be hardly derived. Furthermore, the
study of MMOIBs in dynamical systems, especially for
their originating mechanisms, has just begun because they
consist of complex MMO-sequences.

In our previous studies, we demonstrate that the suc-
cessive MMOIBs occur as many times as desired in the
Bonhoeffer-van der Pol (BVP) oscillator under a weak pe-

riodic perturbation [5, 6]. In particular, we set the param-
eter values near a subcritical Andronov-Hopf bifurcation
(AHB) point with no perturbation. When a weak periodic
perturbation is injected to BVP oscillator, MMOIBs can
occur successively in both numerical and experimental re-
sults.

In this study, we investigate a coupling system that con-
sists of two BVP oscillators connected by a resistor. Be-
cause the BVP oscillator play a fundamental role for use in
a coupling system [9], the observed phenomena are con-
sidered to be important. The parameter values of one of
BVP oscillators are chosen near a subcritical AHB point in
the absence of connection, whereas those of the other BVP
oscillator are chosen near a supercritical AHB point. In
this study, we report numerical observations of successive
MMOIBs in the two coupled BVP oscillators by changing
a coupling factor between the two oscillators. We show
that MMOIBs [13, 14 × n], n = 1, 2, . . ., occur many times
through the observation of the one-parameter bifurcation
diagram.

Figure 1: Two BVP oscillators coupled by a resistor.

2. Circuit-setup

Figure 1 shows circuit diagram of two BVP oscillators
connected by a resistor R0. BVP oscillator (O j, j = 1, 2)
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(a) k j = 0.35.
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(b) k j = 0.9.

Figure 2: Stable and unstable solutions around AHB point
in the isolated BVP oscillator for k j = 0.35 and 0.9.

comprises an inductor (L), capacitor (C), resistor (R j), dc
voltage source (E j), and nonlinear conductance (G). We
assume that the voltage–current (v j–i j) characteristic of G
is a third-order polynomial of the form i j = −g1v j + g3v3

j ,
where g1, g3 > 0.

From Kirchhoff’s law, the circuit equation of Fig. 1 is
written as

C
dv1

dt
= i1 − (−g1v1 + g3v3

1) +
1

R0
(v2 − v1),

L
di1
dt
= −v1 − i1R1 + E1,

C
dv2

dt
= i2 − (−g1v2 + g3v3

2) +
1

R0
(v1 − v2),

L
di2
dt
= −v2 − i2R2 + E2.

(1)

Substituting

τ ≡ t
Lg1
, ε ≡ C

g2
1L
, k j ≡ g1R j,

B j ≡
√

g3

g1
E j, x j ≡

√
g3

g1
v j, y j ≡

√g3

g3
1

i j,

α ≡ (R0g1)−1, ( j = 1, 2),

(2)
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Figure 3: Coexisting stable focus and stable relaxation os-
cillation of Fig. 2 (b) for B j = 0.207.

into Eq. (1) yields the following normalized equation:

εẋ1 = y1 − (−x1 + x3
1) + α(x2 − x1),

ẏ1 = −x1 − k1y1 + B1,

εẋ2 = y2 − (−x2 + x3
2) + α(x1 − x2),

ẏ2 = −x2 − k2y2 + B2, where
d
dτ
= · ,

(3)

where ε is a small parameter that corresponds to the small
capacitance C. We assume ε = 0.1 throughout this study.
The parameters α, k j and B j correspond to the coupling
factor R0, the resistance R j and the dc bias voltage E j,
respectively ( j = 1, 2).

A stable focus exists when B j ( j = 1, 2) is chosen as
large value, and when the two BVP oscillators are not con-
nected with each other, i.e., α = 0. This stable focus be-
comes unstable via an AHB point (the bifurcation param-
eter value is indicated by Bc

j). Furthermore, the AHB is
a supercritical for small k j, whereas it becomes subcriti-
cal for larger k j. Figures 2 (a) and (b) show the structures
around the super and subcritical AHB points for k j = 0.35
and 0.9, respectively. In particular, for k j = 0.9, the AHB
is subcritical, and a stable focus and the stable relaxation
oscillation coexist in close proximity in the phase space
near B j = Bc

j as shown in Fig. 3.
In the following results, we use k1 = 0.9, B1 =

0.207, k2 = 0.35, and B2 = 0.428, and employ the cou-
pling factor α as a control parameter. In order to calculate
Eq. (3) with the initial condition x j = y j = 0, j = 1, 2, we
use a fourth-order Runge-Kutta method with the step size
0.01.

3. MMO-incrementing bifurcations

Figure 4 (a) shows MMOs 14, in which x j, j = 1, 2 un-
dergoes one large excursion followed by four successive
small peaks in the observed time series in the two cou-
pled BVP oscillators for α = 0.202. Moreover, when α
is decreased, different MMO sequence 13 is observed as
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(a) 14 (α = 0.202).
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(b) 13 (α = 0.182).

Figure 4: MMOs in the two coupled BVP oscillators.

depicted in Fig. 4 (b). Thus, MMOs 1s, s = 1, 2, . . . are
naturally observed in the two coupled BVP oscillators.

We are now interested in the phenomena between two
neighboring MMOs. When α is slightly decreased from
0.202, more complex MMO sequence is observed. Fig-
ure 5 (a) shows the complex MMO sequence in which 13

and 14 appear alternately. For smaller α, MMOIBs, which
triggers an MMO sequence that upon varying a param-
eter is followed by another type of MMO sequence, oc-
cur [5]. Figure 5 (b) depicts MMOIBs in which MMO
sequence 13 is added to that of Fig. 5(a). In the same
manner, [14, 13 × 3] appears for α = 0.188 as shown in
Fig. 5 (c). Although, at first glance, the two BVP oscil-
lators are synchronized with in-phase, the phase relation-
ship between the two oscillators is complex as shown in
Fig. 5 (d). To investigate MMOIBs more in detail, we
calculate a one-parameter bifurcation diagram. Figure 6
(a) shows the one-parameter bifurcation diagram for α de-
creasing from 0.202, where Poincaré mapped points of
the values of x2 are plotted. We define Poincaré section
as x1 = 1/

√
3, and map points when the flow penetrates

the hyperplane from the negative side to the positive side.
Furthermore, Fig. 6 (b) is the magnified figure of Fig. 6
(a) for 0.184 ≦ α ≦ 0.185. From the figure, it is seen
that MMOIBs occur many times as α decreases. One of
the characteristic features of MMOs is a period-adding. In

the same manner, MMOIBs occur successively as shown
in Fig. 6.

4. Concluding remarks

We investigated the two coupled BVP oscillators, in
which the parameter values of one of the BVP oscil-
lators were chosen near a supercritical AHB point for
α = 0, whereas those of the other BVP oscillator were
chosen near a subcritical AHB point. It is remarkable that
MMOIBs occur many times. The detailed initiating mech-
anism of MMOIBs in the two BVP oscillators remains a
subject for a future study.
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(a) [14, 13 × 1] (α = 0.196).
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(b) [14, 13 × 2] (α = 0.191).
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(c) [14, 13 × 3] (α = 0.188).
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Figure 5: Complex MMO sequence.
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Figure 6: One-parameter bifurcation diagram for 0.182 ≦
α ≦ 0.202.

- 204 -


	Navigation Page
	Session at a glance

