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Abstract—It is known that the Game of Life, a two-
dimensional cellular automaton can emulate Turing ma-
chine on its array. In this research we performed spectral
analysis to investigate the dynamical aspect of the compu-
tation process carried out by Turing machine on the Game
of Life. An actively evolving part of the whole area exhibits
1/ f noise although the whole area does not. The deviation
of power spectrum from 1/ f noise that is commonly ob-
served in the evolution from random configuration can be
explained as a consequence of the ’regularity’ contained in
initial configuration capable of supporting computation.

1. Introduction

Cellular automata (CAs) is ad-dimensional array with
a finite automaton residing at each site. Each automaton
takes the states of neighboring sites as input and makes the
transition of its state according to a set of transition rules.
CAs are also considered to be spatially and temporally dis-
crete dynamical systems with large degrees of freedom.
It was proved that elementary CA (ECA), namely one-
dimensional and two-state, three-neighbor CA rule 110 is
computationally universal [1] that means any algorithms
can be performed by preparing an appropriate initial con-
figuration on the array. Another example of computation-
ally universal CA is the Game of Life (LIFE) [2]. LIFE is a
two-dimensional and two-state, nine-neighbor outer total-
istic CA. These two computationally universal CAs exhibit
1/ f -type power spectrum [3] when they start from random
configuration [4, 5]; moreover ECA rule 110 exhibits 1/ f
noise also in the computation process [6]. These results
suggest that 1/ f noise marks a kind of dynamics that can
support universal computation.

However The power spectral analysis of computation
process in LIFE has not been investigated yet. In this re-
search we study the power spectra of the computation pro-
cess of LIFE in which the evolution of a Turing machine
(TM) is emulated.

2. Turing Machine on LIFE

Let sx,y(t) ∈ {0,1} denote the state of the site (x, y) at time
stept in LIFE. The transition functiond of LIFE is defined

Table 1: Transition function of the Turing machine. The
leftmost column is state and the first line is tape symbol.

0 1 2
s0 (s2,0,L) (s1,2,L) (s0,2,R)
s1 (s0,2,R) – (s1,2,L)
s2 (sH,0,L) – (s2,1,R)

as
sx,y(t + 1) = d(sx,y(t),nx,y(t)), (1)

wherenx,y(t) denotes the sum of the states of the eight near-
est neighboring sites around the site (x, y) at time stept.
The transition functiond is defined by

d(0,3) = d(1,2) = d(1,3) = 1,

otherwise d= 0. (2)

It is known that Turing machine (TM) can be constructed
on the array of LIFE [7]. The TM dealt with this research
has the set of statesQ = {s0, s1, s2, sH} and s0 is the start
state andsH is the final state. The set of input symbols is
Σ = {0,1} and the set of tape symbols isΓ = {0,1,2} and ‘0’
is the blank symbol that appears initially in all but the finite
number of initial cells holding input symbols. The transi-
tion function is represented byδ(q,X) = (p,Y,D), where
q is a state andX is a tape symbol ,p is the next state,Y
is the output symbol, andD ∈ {L,R} is a direction of the
tape head.δ is given by table 1. If this TM starts with
a configurations01n, (n ≥ 0), it halts with a configuration
sH0012n. So this TM is called ‘string doubler’. Table 2
shows configurations in successive transition starting from
a configurations011.

Figure 1 shows a pattern to emulate the computation pro-
cess shown in Table 2 on the array of LIFE. This configu-
ration file executable on Golly [8], a CA simulator, can be
downloaded from the web site [9]. White squares represent
site with state ‘0’, black squares with state ‘1’. The com-
ponents of TM on this array are depicted in Fig. 2. All the
components are deployed in the area with the length and
breadth of about 1600× 1700 sites. The two parts of stack
work as a tape of TM and the upper left contains the sym-
bols written on the left-hand side of the tape head and the
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Table 2: Example of the sequence of the transition of the
string doubler Turing machine. The rightmost column is
the time step on LIFE simulating the Turing machine.

seq. no. configuration time step
0 s011 4,500
1 s1021 15,000
2 2s021 26,000
3 22s01 37,000
4 2s122 49,000
5 s1222 60,000
6 s10222 72, 000
7 2s0222 82,000
8 22s022 93,000
9 222s02 104,000
10 2222s00 116,000
11 222s220 127,000
12 22s2210 137,000
13 2s22110 148,000
14 s221110 160,000
15 s2011110 171,000
16 sH0011110 180,000

lower right contains the symbols written on the right-hand
side of the tape head. The symbol beneath the tape head is
on the signal line from the stack to the finite state machine.

3. Power Spectra of Computation Process

Spectral analysis is one of the useful methods to study
the behaviour of dynamical systems. Therefore we apply
it to the analysis of the computation process shown in Ta-
ble 2. The discrete Fourier transformation of a time series
of statessx,y(t) for t = 0,1, · · · ,T − 1 is given by

ŝx,y( f ) =
1
T

T−1∑
t=0

sx,y(t)exp(−i
2πt f

T
). (3)

The power is defined as

S( f ) =
1
N

∑
x,y

|ŝxy( f )|2, (4)

where the summation is taken in allN sites in considera-
tion. The period of the component at a frequencyf in a
power spectrum is given byT/ f .

We divide the area in which the string doubler TM pre-
dominantly works into 140 sections with 100× 100 sites
to clarify the regional difference among the array and cal-
culate the power spectrum of each section forT = 16,384
time steps. The area employed to calculate the power spec-
tra is depicted as a polygon in Fig. 3.

The exponentβ of power spectrum is estimated by means
of the least-squares fitting by ln(S) = α + β ln( f ) in the
range off = 1 ∼ 50.

Figure 1: Initial configuration of string doubler Turing ma-
chine on the array of LIFE.

The residual sum of squares is given by

σ2 =
1
fb

fb∑
f=1

(ln(S) − α − β ln( f ))2, (5)

where fr is the number of data used for the calculation of
σ2 and we setfr = 50.

The top of Fig. 4 shows a typical example of power spec-
trum of the section with 100× 100 sites marked with ‘A’
in Fig. 3. Bothx andy axes are plotted on a logarithmic
scale. The power spectrum is almost even at low frequen-
cies and has the highest power atf = 546 corresponding to
the periodic behaviour with period 16, 384/546≈ 30. That
is caused by the periodic patterns with period 30 called
‘queen bee shuttle’ shown in Fig. 5. The queen bee shuttle
is the most commonly used oscillator in this realization of
TM and is about the 18th and 19th most common naturally-
occurring oscillators [10].

The second from the top of Fig. 4 shows the power spec-
tra with the least value ofβ = −0.90 among those with
σ2 < 0.2. Since the power spectrum withσ2 ≥ 0.2 is not
considered to follow the power law, we exclude those from
consideration. This power spectrum presents 1/ f charac-
teristic and its evolution is in a section marked with ‘B’ in
Fig. 3. This section is located in a stack cell that is most
frequently rewritten during the transition. And the power
spectrum with the second least value ofβ − 0.67 (second
from bottom of Fig. 4) is calculated in a section marked
with ‘C’ beneath the section ‘B’ although this evolution is
not considered to be 1/ f noise.

The power spectrum averaged over 140 sections is
shown at the bottom of Fig. 4 with the exponentβ = −0.31.
This result implies that the computation process does not
exhibits 1/ f noise as a whole. Figure 6 shows the power
spectrum of the evolution forT = 16,384 time steps
starting from a random configuration with array size of
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Figure 2: Components of Turing machine on the array of
the Game of Life.

1183× 1183= 1,399,489 with absorbing boundary con-
ditions in which the sites beyond the boundary is fixed to
state ‘0’. The exponentβ is estimated at−1.32 and the one
estimated under the periodic boundary conditions is−1.31.
These results show that the evolution staring from random
configuration exhibits 1/ f noise.

4. Discussion

We calculated the power spectra of the computation pro-
cess of TM emulated on LIFE. The sections containing a
most frequently rewritten stack cell exhibit 1/ f noise al-
though the power spectrum averaged over whole area in
which the TM works has the exponent value close to zero.
These results imply that the 1/ f -type characteristics is lo-
calized in actively evolving area. On the other hand, the
evolution starting from a random configuration with almost
the same number of sites exhibits 1/ f noise.

These results form a striking contrast with ECA rule 110
in which both the computation process emulating cyclic tag
system and the evolution with a random initial configura-
tion present 1/ f noise. The biggest difference in computa-
tion process between LIFE and rule 110 is the frequency of
‘burst’ caused by the collision of propagating patterns dur-
ing the evolution. Sporadic bursts occur during the com-
putation process in LIFE since signals are designed to be
detoured to avoid collisions. In rule 110, however, it is
inevitable for propagating patterns to avoid collisions be-
cause of its low dimensionality of the array.

We should notice that the results obtained in this research
does not invalidate the hypothetical relationship between
computational universality and 1/ f noise in CAs. The dy-
namics that creates 1/ f noise in most every case is com-
patible with non1/ f -type behaviour accompanying a par-

A

B

C

Figure 3: Area in which power spectra are calculated
among the array of LIFE.

ticular initial configuration. The evolution starting from
random configuration can clearly unveil the essential prop-
erty intrinsic to LIFE because it is affected solely by its
transition rule and the power spectrum varies little in shape
according to the details of subtle difference in initial con-
figuration. On the other hand, the power spectrum of com-
putation process is affected not only by the transition rule
but also by the ‘regularity’ contained in the elaborately de-
signed initial configuration capable of supporting compu-
tation. We can explain the deviation of power spectrum of
computation process from 1/ f noise as a consequence of
the ’regularity’ contained in initial configuration and there-
fore in subsequent evolution.

Here arise some questions out of the results of this re-
search. First one is a question of the dependency of power
spectra upon the details of computing mechanism. We
might be able to elucidate it by investigating another com-
puting machine such as register machine on LIFE. And the
second one is a question on the power spectrum of the evo-
lution with moderate randomness. The evolution from ran-
dom configuration and the computation process are both
extreme cases among all kinds of possible evolution. The
former completely lacks in orderliness and the latter has no
randomness. What kind of power spectrum is observed in
the evolution starting from moderately orderly initial con-
figuration? These questions are issues in future.
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Figure 4: Power spectrum with typical shape (top) and with
the least value of exponent (second from the top), the sec-
ond least value (second from the bottom) and averaged over
all sections during the computation process (bottom). The
x-axis is the frequencyf , y-axis is powerS. The expo-
nentβ of the power spectrum is estimated to−0.90 (second
from the top),−0.67 (second from the bottom) and−0.31
(bottom).

Figure 5: Periodic pattern ‘queen bee shuttle’ with period
30 that is most commonly used in the realization of Turing
machine.
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Figure 6: Power spectrum of the evolution starting from
random configuration. Thex-axis is the frequencyf , y-
axis is powerS. The exponentβ of the power spectrum is
estimated to−1.32.
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