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Abstract—Strange non-chaotic attractors are observed
experimentally in a chaotic neuron integrated circuit that
implements a chaotic neuron model driven by an external
quasiperiodic signal. Lyapunov and phase sensitivity ex-
ponents are used to classify the observed attractors into the
following three types: 1) chaotic attractors; 2) tori; and 3)
strange non-chaotic attractors. In experiments, it is gener-
ally difficult to extract precise values for the non-positive
largest Lyapunov exponents from the resulting time se-
ries. Therefore, a mathematical model of the circuit is
constructed, such that the attractors obtained from the ex-
perimental behavior can be reproduced accurately in sim-
ulations. By analyzing the mathematical model instead of
directly analyzing the time series from the circuit, the ob-
served attractors are successfully characterized, including
SNAs.

1. Introduction
Strange non-chaotic attractors (SNAs), with fractal

structure and a non-positive Lyapunov exponent, appear
in the responses largest of nonlinear systems to quasiperi-
odically varying external forces [1]. So far, SNAs have
been observed both numerically in various nonlinear mod-
els [2, 3] and experimentally, for example, in electrical cir-
cuits [4, 5]. (See also [6] for review and references therein).

In this paper, SNAs are observed in experiments con-
ducted with a chaotic neuron integrated circuit that imple-
ments a chaotic neuron model [7]. Lyapunov and phase
sensitivity exponents are used to classify the observed at-
tractors into the following three types: 1) chaotic attrac-
tors with a positive Lyapunov exponent; 2) tori with non-
positive Lyapunov exponents and zero phase sensitivity ex-
ponent; and 3) strange non-chaotic attractors with a non-
positive Lyapunov exponents and a non-zero phase sensi-
tivity exponent. It is seen that the non-positive largest Lya-
punov exponent is important in distinguishing SNAs from
chaotic attractors. However, it is difficult to calculate a pre-
cise value for the non-positive largest Lyapunov exponent
from the time series obtained from experiments employing
the circuit.

Therefore, a mathematical model of the circuit, which
can reproduce the attractors seen in the experimental out-
put, is constructed. This model is then used to evaluate

the experimentally observed attractors; toward this end, a
chaotic neuron model with a quasiperiodic force, which can
reproduce all the type of attractors, is introduced in Section
2.

In Section 3, methods for calculating the Lyapunov ex-
ponents, and the phase sensitivity exponent, are explained.
In Section 4, the results from the circuit experiments can
be evaluated by using values of the characteristic exponents
calculated through the mathematical model. Thus, the at-
tractors obtained from the circuit are classified.

2. Chaotic neuron model with a quasiperiodic external
force

A chaotic neuron model [7] with a quasiperiodic external
force can be expressed as

y(t + 1) = kry(t) + α f (h(t)) + a, (1)
h(t + 1) = y(t + 1) + b cos(2πθ(t + 1)), (2)
θ(t + 1) = θ(t) + ω mod 1, (3)

where t is the discrete-time variable, y(t) is the internal
state of the neuron, kr is the decay coefficient of the in-
ternal state, α is a scaling parameter for the refractoriness,
a is a bias on the system, and f (·) is a monotonically de-
creasing nonlinear function as described below. Moreover,
b cos(2πθ(t)) is a quasiperiodic external force with ampli-
tude b and phase θ(t), and ω = (

√
5 − 1)/2.

Part of the chaotic neuron integrated circuit used in the
experiments is shown in Figure 1 [8]. In this figure, the
nonlinear output function circuit for the neuron is enclosed
by broken lines, and the input-output characteristic for this
circuit can be controlled through external voltages, VrN and
VrP.

As mentioned in Section 1, the characteristic exponents
must be measured to classify the types of attractors. To cal-
culate these exponents, a mathematical expression for the
transfer characteristic of the output circuit, and its deriva-
tive, are necessary. However, explicitly describing the
transfer characteristic of the nonlinear output function cir-
cuit is difficult because of complex physical phenomena re-
sulting from the MOSFETs in the circuit. Therefore, cubic
spline interpolation of the measured transfer curve, which
is continuous and piecewise differentiable, is employed to

2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

- 232 -



Cy

Cξ

VSS 

Vdd 

VrNVrP

Cα

Cu

Cu

Cu

CAt

Input  Quasiperiodic 
   External Force

x(t+1)

Vdd = 1.65[V]

VSS = -1.65[V]

 External Bias

Cu

ΦB

ΦB

ΦB

ΦB

ΦB

ΦB

ΦC

ΦC

ΦC

ΦC

ΦC

ΦC

ΦC ΦD

ΦD

ΦD

ΦD

ΦD

ΦC

y(t+1)

Cθ

Ckr

ΦC ΦD

ΦC

ΦC

ΦC

ΦC

ΦB

ΦC

ΦD

  Output Function Circuit

h(t+1)

Figure 1: Schematic of part of the chaotic neuron integrated
circuit [8]. ΦB, ΦC, and ΦD are non-overlapping clocks.

model the characteristic. The form of nonlinear output
function f (·) is shown in Figure 2.
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Figure 2: The form of nonlinear output function f (·).

3. Numerical characterization of attractors

The Lyapunov exponents, {λy, λθ} and the phase sensi-
tivity exponent, µ, are used to categorize the obtained at-
tractors. In this section, a précis of the methods used to
calculate {λy, λθ} and µ [9] is given.

Without quasiperiodic external force, b cos(2πθ(t)), the
chaotic neuron model is a one-dimensional discrete-time
dynamical system with respect to the internal state, y(t). By
applying b cos(2πθ(t)), however, the chaotic neuron model
becomes a two-dimensional discrete-time dynamical sys-
tem. As a result, the orbital instability of the chaotic neuron
circuit with b cos(2πθ(t)) included must be evaluated by us-
ing two Lyapunov exponents. However, one of Lyapunov
exponent, say λθ, is always zero owing to the rigid rotation,
Eq. (3).

Therefore, only the Lyapunov exponent with respect to
the direction of y(t), that is, λy, is considered, which can be
obtained from

λy = lim
T→∞

1
T

T−1∑
t=0

log
∣∣∣∣∣∂y(t + 1)
∂y(t)

∣∣∣∣∣ . (4)

By defining the two partial derivatives of h(t) in (2) with
respect to y(t) and θ(t) as hy(t) and hθ(t), respectively, par-
tial differentiation of y(t + 1) with respect to θ(t + 1) leads
to

∂y(t + 1)
∂θ(t + 1)

= hθ(t) + hy(t)
∂y(t)
∂θ(t)

. (5)

In (5), the second term on the right-hand side contains
∂y(t)/∂θ(t), which is equal to the term on the left-hand side
at the previous time step. Hence, (5) can be rewritten as

∂y(t + 1)
∂θ(t + 1)

=

t+1∑
k=1

hθ(k − 1)Rt+1−k(k) + Rt+1(0)
∂y(0)
∂θ(0)

, (6)

where

Rt(k) =
t−1∏
i=0

hy(k + i), (7)

and Rt(0) = 1. When λy < 0, the second term on the right-
hand side of (6) decreases exponentially for large t, mean-
ing that this term can be ignored.

Moreover, to find the exponent µ, suppose that

S t =

t∑
k=1

hθ(k − 1)Rt−k(k), (8)

and

γ(t) = max
0 ≤ t′≤ t

|S t′ |. (9)

Then, the phase sensitivity function Γ(t) is defined as the
smallest value of γ(t) for the initial conditions:

Γ(t) = min
y(0), θ(0)

γ(t). (10)

In general, the phase sensitivity function Γ(t) is bounded for
smooth attractors for large t. In contrast, for SNAs, which
are non-smooth, Γ(t) grows with t as

Γ(t) ' tµ, (11)

where µ > 0 is the phase sensitivity exponent. In this paper,
the measured attractors are classified into three categories
according to λy and µ: 1) chaotic attractors with λy > 0; 2)
tori with λy < 0 and µ = 0; and 3) SNAs with λy < 0 and
µ > 0.

4. Experimental results
When conducting the experiments using the circuit in

Figure 1, the amplitude b of the external quasiperiodic
force was changed and y(t) and θ(t) were observed, for
two different sets (Case 1 and Case 2) of the parameters
a, kr, α, VrN , and VrP. For Case 1, α = 0.646, kr = 0.835,
a = −0.338, VrN = 1.6 V, and VrP = −1.6 V. For Case 2,
α = 0.646, kr = 0.835, a = −0.208, VrN = 1.3 V, and
VrP = −1.3 V.
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Figure 3: (Left panels) Experimental results for Case 1
with (a-1) b = 0.04, (b-1) b = 0.06, (c-1) b = 0.08, (d-
1) b = 0.1, and (e-1) b = 0.16. (Right panels) Numerical
results from the corresponding mathematical model for (a-
2) λy = 0.166, (b-2) λy = −0.418, (c-2) λy=-0.484, (d-2)
λy = −0.66, and (e-2) λy = −0.481.

The experimental results and their simulated counter-
parts are shown in Figures 3 and 4, respectively. Figure
5 then shows time evolutions of the phase sensitivity func-
tion Γ(t) for nonchaotic attractors in the right-hand panels
of Figures 3 and 4.
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Figure 4: (Left panels) Experimental results for Case 2 with
(a-1) b = 0.04, (b-1) b = 0.08, (c-1) b = 0.1, (d-1) b =
0.12, and (e-1) b = 0.14. (Right panels) Numerical results
from the corresponding mathematical model for (a-2) λy =

−0.19, (b-2) λy = −0.206, (c-2) λy=0.1, (d-2) λy = −0.052,
and (e-2) λy = −0.003.

the attractor has a positive value of λy and is thus classified
as a chaotic attractor. Conversely, the attractors in (b-2),
(c-2), (d-2), and (e-2) have a negative Lyapunov exponents
λy, and the phase sensitivity function Γ(t) for these attrac-
tors is shown in Figure 5(a). In Figure 5(a), it can be seen
that Γ(t) for the attractor in (e-2) converges to a constant
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value for large t. In contrast, Γ(t) values for the attractors
in (b-2), (c-2), and (d-2) do not converge to constant val-
ues; instead they increase with t algebraically. Therefore,
it can be concluded that µ = 0 for the attractor shown in
(a-2), and µ > 0 for those in (b-2), (c-2), and (d-2). As a
consequence, the attractors shown in Figure 3 are classified
as follows: (a-2) shows a chaotic attractor; (b-2), (c-2), and
(d-2) show SNAs; and (e-2) shows a torus.

Next, for Case 2, shown in Figure 4, the attractor in (c-2)
has a positive λy and is therefore a chaotic attractor. On the
other hand, the attractors shown in (a-2), (b-2), (d-2), and
(e-2) have negative λy. From Figure 5, it can be seen that
the attractors shown in (a-2) and (b-2) of Figure 4 are tori,
(c-2) shows a chaotic attractor, and (d-2) and (c-2) show
SNAs.

In addition, for Case 1, it can be seen from Figure 3 that
the torus becomes an SNA, and the SNA changes to chaos
as the value of b is increased. In contrast, in Case 2 shown
in Figure 4, the torus changes into an SNA via chaotic be-
havior. From these observations, it is concluded that the
dynamical system given by (1)–(3) may also possess a va-
riety of bifurcation structures.

5. Conclusions
An external quasiperiodic signal has been applied to a

chaotic neuron circuit. In general, it is difficult to obtain a
precise value for the non-positive largest Lyapunov expo-
nent from the experimentally obtained time series from the
circuit. Therefore, a mathematical model of the circuit was
constructed by using a spline interpolation of the nonlinear
output function. It was then possible to analyze the attrac-
tors from the model instead of those from the experiments.
By using the Lyapunov exponents and phase sensitivity ex-
ponents calculated from the surrogate mathematical model,
the experimental results could be evaluated and, as a result,
SNAs were found among the observed attractors. In addi-
tion, changes in the attractor type with changing amplitude
of the external force suggests the possibility of a variety of
bifurcation structures in the output behavior of the chaotic
neuron circuit when driven by an external quasiperiodic
signal.
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