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Abstract—With changing the strengths of connections
as a parameter, we examined the oscillatory states of the
unidirectionally connected Wilson-Cowan oscillators mod-
els. We observed aperiodic oscillations as well as periodic
oscillations, which depend on the parameter values. Nu-
merical analysis suggests that the aperiodic oscillation is
due to the interactions between the bifurcation phenomena
of itself and oscillatory external inputs.

1. Introduction

Wilson-Cowan oscillator model is a well-known neu-
ral oscillator model, which expresses excitatory and in-
hibitory firing rates of a population of neurons [1]. The
interactions of excitatory and inhibitory populations can be
sometimes regarded as local behavior of the brain. Thus
Wilson-Cowan oscillator is widely used to compose neural
network models (e.g. associative memory, visual cortex,
etc. [2, 3, 4, 5)).

The properties of bifurcation of single Wilson-Cowan
oscillator have been reported [6], and their weakly con-
nected models are also well investigated [7]. Among them,
it has been reported that chaotic oscillation occurs in recip-
rocally connected Wilson-Cowan oscillators [8], and sug-
gested that single Wilson-Cowan oscillator may also give
rise to aperiodic oscillation [7]. However, little attention
has been paid to the cause of aperiodic or chaotic oscilla-
tions so far.

The purpose of our study is to reveal the mechanism of
occurrence and variation of aperiodic oscillations in the
coupled Wilson-Cowan oscillator. We connected two os-
cillators unidirectionally for simplicity, yet such unidirec-
tional connections are often used, for instance, in a chain
model [7, 9, 10]. And we examined the mechanism of os-
cillation with changing strengths of connections.

2. Methods

2.1. Wilson-Cowan oscillator model

Wilson-Cowan oscillator is described by the following
differential equations:

E=-E+(1-E)S.(c.E—cyl +P),
j:—[+(1—])5¢(C3E—C4I+Q),

where E and I denote mean firing rates of excitatory and
inhibitory neurons respectively, c1, ¢a, c3, ¢4 are strengths
of connections, and P, @ are external inputs (Fig.1). S.(z)
and S;(x) are sigmoid functions as follows:

Sulz) = 1 _ 1
W= exp(—ae(z —0.)) 1+ exp(acbe),
Si(z) = 1 1

1+exp(—a;(z —0;)) 1+ exp(ab;)

In this study, ¢y, ¢o, 3, ¢4, ae, B, a;, and 6; are constant
parameters. We set the values as follows: ¢; = 16.0, ¢ =
12.0, ¢3 = 15.0, ¢4 = 3.0, a. = 1.3, 6, = 4.0, a; = 2.0,
and 6; = 3.7 respectively, following the parameter values
in Wilson & Cowan [1].
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Figure 1: Wilson-Cowan oscillator model.

The bifurcation phenomena of a single Wilson-Cowan
oscillator is known to occur depending on P and Q values
[7] . Sets of bifurcation points in (P, ()) space are shown in
Fig.2, in which the red line denotes the Andronov-Hopf bi-
furcation points and the green line denotes the saddle-node
bifurcation points. For convenience, we call the region 2
“oscillatory region” because of its oscillatory property, and
we call region 1 and 3 “convergent region”.

2.2. Connected oscillators model

In this study, we analyzed two Wilson-Cowan oscilla-
tors which are connected unidirectionally (Fig.3). One of
the oscillators sends signals to the other. Thus one is a
sender, and the other is a receiver. Let the sender oscillate
by setting the external input in the oscillatory region. We
assume that the receiver does not oscillate at initial state.
The strengths of connections between oscillators are . and
B. We refer the sender to “oscillator 17, and the receiver to
“oscillator 2 ”, for convenience.
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Figure 2: Bifurcation points of Wilson-Cowan oscillator
in (P, Q) space (top) and schematic three types of phase
space (bottom). Each number of the bottom figures cor-
responds to those in the top figure. The solid black circle
and open circle denote stable and unstable equilibria re-
spectively. The closed trajectory is a stable limit cycle.

Therefore oscillator 1 and 2 are denoted by the following
equations:

Ei, =—-E +(1—-E)S.(cE — oIy + Py), O
L =-L+(1-1NH)Si(csE1 —calh +Qn),
Ey =—Ey+(1—E)S. (c1Ey — cols + aFy), ?
I =1+ (1 — 12) S; (03E2 —cyls + BEI) .

Thus we assume that the inputs to the oscillator 2 from the
oscillator 1 are represented by (P, Q) = (aE;, SE;). We
investigate the change of oscillatory mode of this oscillator
with changing parameter « and 3.

The external inputs P; and @), of the oscillator 1 are
setto P, = 1.9 and Q; = 0.0 in the oscillatory region
respectively so that it oscillates.
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Figure 3: Unidirectionally connected Wilson-Cowan neu-
rons investigated in this study.

3. Resultsand Discussion

3.1. Periodic oscillation

The oscillator 2 oscillates periodically in a broad range
of parameter space (Fig.4). Average amplitude of E5 in-
creases as parameter « increases, and decreases as param-
eter 5 increases in periodic states.
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Figure 4: (a) Periodic oscillation of E, when a =
8.00,4 = 2.00. (b) The power spectrum of E,. Green
line is the spectrum of E1, and red line is the spectrum of
E5. They are almost correspondent.

3.2. Aperiodic oscillation

The oscillator 2 shows aperiodic oscillations at particu-
lar parameter values (Fig.5). The parameter region corre-
sponding to aperiodic states is, however, much smaller than
that in a periodic state.
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Figure 5: (a) Aperiodic oscillation of E; when a =
4.47,8 = 0.90. (b) The power spectrum of E,. Green
line is the spectrum of E4, and red line is the spectrum of
E,.

3.3. Background of periodic and aperiodic oscillation

We discuss causes of periodic and aperiodic oscillation.

Let us consider the cause of periodic oscillation of the
oscillator 2. Wilson-Cowan oscillator has a parameter re-
gion in which firing rates converge on a constant value.
This convergent region corresponds to the rest area of os-
cillatory region (region 2 in Fig.2). The oscillator 2 travels
over different convergent states since the external inputs
oscillate in (P,Q) = (aE1, BE4) space (Fig.2). Oscilla-
tion of «E, and SE; forces the oscillator 2 to transverse
various convergent points as time goes on. The emergent
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periodic oscillation will be due to smooth oscillation of the
convergent values.

This assumption can explain that the frequency of the
oscillator 1 and that of the oscillator 2 are the same (Fig.4).
Namely, the frequency of the oscillator 2 is equal to the
frequency of the external inputs (£, SE;). Meanwhile,
a and g control the amplitude of the oscillator 2.

When the values of « and 3 are in the specific range, for
example @ = 5.3 and 8 = 1.0, the oscillator 2 oscillates
aperiodically. This phenomenon would be due to the fact
that the range of the external inputs to the oscillator is al-
most overlapped with oscillatory region (Fig.6 (b) ). The
mean amplitudes of («Ey, SE;) can be plotted in the os-
cillatory region. In this situation, the mechanism as “trav-
eling over convergent states” in the case of periodic oscil-
lation collapses. The oscillation is affected by the external
signals and its internal oscillatory characteristics. Various
lower frequencies emerge compared with periodic oscilla-
tion (Fig.5 (b)).

The results suggest that the periodic oscillation of
the external input determines whether the output oscil-
lation is periodic or aperiodic. Thus we examined if
these phenomena are the case with a sinusoidal exter-
nal input. E,(t) is shown in Fig.7 with external inputs
(P, Q) = (a(0.12sin 27wt + A), £(0.12sin 27wt + A)),
where w = 0.00365 and A = 0.23754. These are ad-
justed so as to be equivalent to the inputs from oscillator 1
in the previous numerical experiments. Oscillatory behav-
iors in this case (Fig.7) are similar to those in Fig.4 and 5.
Therefore, with at least periodic external inputs, periodic or
aperiodic oscillation may be produced on a single Wilson-
Cowan oscillator. And then, we change the frequency of
the input sinusoidal function. The oscillator reveals differ-
ent behaviour as the input frequency changes (Fig.8). Ape-
riodic oscillation occurs at only specific input frequencies
which are close to that Wilson-Cowan oscillator has. Large
frequencies lead to a state in which the oscillator behaves
as if it has an average constant parameter value. On the
other hand, small frequencies give rise to oscillation that
is formed by two periodic waves. We guess that one wave
has the frequency of Wilson-Cowan oscillator, and another
wave has that of the periodic inputs.

3.4. Chaotic characteristics

It has been reported that chaotic oscillation is observed
on reciprocal connected Wilson-Cowan oscillators at par-
ticular strengths of connections [8]. Thus it is also possi-
ble that induced aperiodic oscillation of the oscillator 2 is
chaotic.

We calculated the largest Lyapunov exponent (LLE) of
the oscillator 2 (Fig.9). When a perturbation was intro-
duced to the initial state in the state-space, the mean rate of
expansion corresponds to the largest Lyapunov exponent.
The expansion rate was averaged over 50000 steps.

In the specific range of a and 8 (1.13 < aE; < 1.37
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Figure 6: The range of the external inputs (blue line) in the
bifurcation set space. The central point denotes the average
values. (a) a = 8.00, 5 = 2.00 (b) « =4.47, 5 =0.90
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Figure 7: Periodic and aperiodic oscillation E» with si-
nusoidal external inputs. (8) a = 8.00, 8 = 2.00. (b)
a =445, f=0.75.
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Figure 8: The oscillatory mode with sinusoidal inputs
changes depending on a frequency of the inputs. (a) w =
0.3. (b) w = 0.003891. (c) w = 0.00003.
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in Fig.9 (a), and —0.11 < BE; < 0.04 in Fig.9 (b)), LLE
can be positive, which implies chaotic instability. This re-
sult suggests that unidirectional connected Wilson-Cowan
oscillators can also produce chaotic oscillations as the re-
ciprocally connected model can.

As has been mentioned, aperiodic oscillation observed in
this study can occur with sinusoidal external inputs. LLEs
in this case are much similar to those in Fig.9. Therefore
the oscillation in response to the sinusoidal input can also
become chaotic.
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Figure 9: Largest Lyapunov exponents. (a) P = aF,,Q =
0.1.(b) P=1.6,Q = SE;.

4. Conclusion

In this study, we investigated the properties of oscilla-
tions of unidirectionally connected Wilson-Cowan oscilla-
tors. Inputs from the oscillator oscillating periodically in-
duces periodic or aperiodic oscillations dependent on the
strengths of connections. The aperiodic oscillation is de-
rived from the interaction between periodic inputs and the
oscillator-owned oscillatory property. In addition, the fre-
quency of input also affects the oscillation. Thus aperiodic
oscillation can be obtained on a single Wilson-Cowan os-
cillator by periodic inputs. Moreover, the largest Lyapunov
exponent suggests that its oscillation would be chaotic at a

particular range of strengths of connections. Although this
model is much simple, complex behaviours can be induced.
Thus this may be useful as a tool to construct a complicated
system such as a brain model in order to simulate complex
oscillatory phenomena.
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