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Abstract—We demonstrate by electronic circuit experi-
ments the feasibility of an unstable control loop to stabilize
torsion-free orbits by time-delayed feedback control. Our
experiments show the importance of the coupling scheme
for global control performance.

1. Introduction

The idea to control chaos, e.g. to stabilize unstable pe-
riodic orbits (UPOs) embedded in the chaotic attractor by
applying small perturbations. has already been realized in
the early 1990s. The pioneering mthod of Ott, Grebogi,
and Yorke [1], from the very beginning, was well under-
stood from the theoretical point of view, but difficult to ap-
ply to fast experimental systems. The time-delayed feed-
back method (TDFC) of Pyragas [2] turned out to be easy
to apply in experiment, but difficult to handle theoretically,
since any low-dimensional system of differential equations
acquires infinite dimensionality due to the action of delay
terms.

Time-delayed feedback methods are based on measuring
a time signal s(t). The control force is generated by a time-
delayed difference signal:

F(t) = k (s(t) − s(t − τ)) (1)

For proper choice of the control amplitude k stable periodic
oscillations can be achieved. Such a scheme is non-invasive
if the delay time τ is chosen to coincide with the period of
the target state. Once the system trajectory has settled on
the UPO the control force F(t) vanishes by construction.

A large number of successful applications of TDFC have
been reported in various fields of physics, engineering,
chemistry and biology [3]. While TDFC is a convenient
technique for controlling chaos, a serious drawback called
the ’odd number limitation’ became evident [4] predicting
that in driven systems UPOs with an odd number of real un-
stable Floquet multipliers can never stabilized by conven-
tional TDFC. In other words only UPOs with finite torsion
can be stabilized [5].

To overcome this limitation Pyragas introduced the
counterintuitive idea of introducing an unstable time-
delayed feedback controller (UTDFC) [6]. Such a con-
troller has an additional unstable loop variable which arti-
ficially increases the number of the real Floquet multipliers
to become even and, thus, avoids the odd number limita-
tion.

2. Unstable van der Pol oscillator

A prominent paradigm showing such torsion-free unsta-
ble orbits is the unstable van der Pol oscillator which is
described by the following equations of motion:

ẋ(t) = −y(t) + εx(t) + x3(t)/3, (2a)

ẏ(t) = x(t) . (2b)

Here, ε is the bifurcation parameter of system, and the
time scale is normalized to the inverse oscillator frequency.
Equation (2) differs from that for the conventional van der
Pol oscillator merely by the sign of the nonlinear coeffi-
cient. For ε < 0, this equation has two coexisting solu-
tions, a stable fixed point at the origin x = y = 0, and
an unstable limit cycle with period τ = 2π + O(ε), ampli-
tude 2

√
−ε + O(ε), and a real positive Floquet exponent

λ = −ε + O(ε3/2). The real positive Floquet exponent indi-
cates that the limit cycle is unstable and shows no torsion.

Figure 1: Bifurcation diagram of the unstable van der Pol
oscillator. For ε < 0 the stable fixed point at the origin
coexists with an UPO of amplitude 2

√
−ε. For ε > 0 there

is only an unstable fixed point at the origin.
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3. Applying the concept of an unstable controller

We assume that x is a system variable accessible in ex-
periment. To stabilize the unstable periodic orbit appearing
for ε < 0 we consider the following control algorithm:

ẋ(t) = −y(t) + εx(t) + x3(t)/3 + w(t) f (x(t)) (3a)

ẏ(t) = x(t) (3b)

ẇ(t) = λcw(t) − k(x(t) − x(t − τ)) f (x(t)) . (3c)

The term w f (x) in Eq. (3a) is the control signal perturb-
ing the x-variable. The specific form of this coupling is
given by the function f (x) and will be specified later. Equa-
tion (3c) describes an unstable delayed feedback controller
with λc > 0. Here w(t) is the dynamical variable of the
controller and k determines the feedback strength. Note
that the control scheme does not change the solution of the
free system corresponding to the unstable orbit of period τ,
since for x(t) = x(t − τ) Eq. (3c) is satisfied by w = 0 and
the control signal w(t) f (x(t)) in Eq. (3a) vanishes.

We just mention that in a recent paper [7] Eq. (3) has
been considered as a paradigm of a subcritical Hopf bifur-
cation showing an unstable torsion-free limit cycle. The
possibility to stabilize such an orbit was explored, both an-
alytically and numerically, for the specific choice of a lin-
ear coupling function, f (x) = x, and successful control was
achieved.

4. Design of the experiment

In order to probe the concept of an unstable controller in
experiment we designed an autonomous electronic circuit
which is related to Eq. (3).

Fig. 2 shows the equivalent circuit scheme of the unsta-
ble van der Pol oscillator system with an unstable controller
based on active elements. The upper part corresponds to the
unstable van der Pol oscillator. The linear terms were im-
plemented by operational amplifiers TL084 and the nonlin-
earities by AD633 multiplier ICs. The fundamental period
T of the unstable van der Pol oscillator was set to 0.628 ms
by trimming the time constants of the integrators, so that
the resulting dynamics was easy to handle with our equip-
ment. The lower part of Fig. 2 marked by the dashed frame
shows the unstable control loop. It was designed from the
same type of active components. The control amplitude k
and the positive exponent λc as well as the bifurcation pa-
rameter ε of the unstable van der Pol oscillator were simply
determined by the gain of the electronic amplifiers which
were tuned by resistors.

For the time-delayed signal, we designed a digital delay
system based on a combination of an analog-to-digital con-
verter (ADC) of 8-bits resolution, a shift register (”FIFO”)
and a digital-to-analog converter (DAC). The accuracy of
the delay time could be set to better than 1% of T by using
a clock frequency of a few hundred kHz. The output signal
of the delay system is smoothed by a low-pass filter with a
bandwidth of about 10% of the clock frequency.
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Figure 2: Block diagram of the van der Pol oscillator with
unstable control loop (setup built from active components).

In our experiment the coupling function f (x) of the con-
trol algorithm Eq. (3) was chosen to be either a linear func-
tion of x(t) or of sigmoidal type f (x) = sign(x). In the lin-
ear case the coupling function was just given by the voltage
representing the x-component. In the sigmoidal case the
coupling function was experimentally realized by means of
a comparator.

To ensure accurate initial conditions we used electronic
switches parallel to each of the integrator outputs which
generate the variables x(t), y(t) and w(t). These switches al-
lowed to apply adjustable constant voltages x0, y0 and w0,
respectively, and a precise timing. Thus, when switching
on the system at t = 0, the variables x(t) and y(t) started
from a well-defined state. At about one cycle later the
feedback loop generating the control signal was switched
on, simultaneously with the controller variable w(t). Such
a time-lag was necessary to obtain an appropriate delayed
signal reflecting the dynamics of the uncontrolled system
close to the initial state. Note that the control generally
failed when the feedback is switched on earlier than one
cycle or later than three or four cycles. This is understand-
able since in the former case a proper delay signal has not
yet developed while in the latter case the unstable system
has already escaped too far away from the target state. The
data were recorded by a digital oscilloscope with a sam-
pling rate higher than 100MHz and with file length larger
than 216 words.

This setup allowed to study in detail the basin of attrac-
tion of the controlled state. In the following subsection we
describe control experiments for both linear and sigmoidal
coupling.

- 208 -



Figure 3: Linear coupling: Time series of the system vari-
able x(t) (line) and the control loop variable w(t) (dashed)
for fixed parameters ε = −0.1, k = 0.3 and λc = 0.051, but
different initial conditions. (a) Initial conditions close to the
UPO (x0, y0,w0) = (0.6, 0, 0): control successful. (b) Ini-
tial conditions close to the origin (x0, y0,w0) = (0.1, 0, 0):
control fails.

5. Experimental results

5.1. Linear coupling

As pointed out in [7] for the most trivial choice of the
coupling function, f (x(t)) = const the system variable x(t)
and the unstable control loop variable w(t) immediately de-
couple and the control fails. The next simplest coupling
is of linear type. It was shown by both analytical and nu-
merical investigations that such an unstable time-delayed
feedback controller can stabilize the torsion-free UPO of
the unstable van der Pol oscillator.

The first step was to confirm this result in experiment.
We adjusted the parameters to ε = −0.1, k = 0.3, and
λc = 0.051. Fig. 3(a) shows a time series of x(t) and w(t)
for the initial conditions (x0, y0,w0) = (0.6, 0, 0), which is
pretty close to the UPO. The feedback loop was switched
on one period later in order to generate a proper delay sig-
nal x(t − τ). This switching defines time zero in Fig. 3.
After a transient process of about 2500 time-steps a sta-
ble oscillation in x appears and the control variable w(t)
converges to zero. The UPO is stabilized, and the con-
trol force does not affect anymore the stabilized van der
Pol oscillator. The situation changes dramatically for ini-
tial conditions far away from the UPO. In Fig. 3(b) we
have chosen the initial conditions (x0, y0,w0) = (0.1, 0, 0).
The x(t)-component immediately starts oscillating between
the saturation limits of the active elements, and the control
variable w(t) diverges. This examples already indicates the
importance of global properties in practical applications.

We probed systematically the dependence of control per-
formance on the chosen initial conditions. We fixed w0 at
zero and varied both x0 and y0 from -1.0 V to 1.0 V in steps
of 10 mV. The result is shown in Fig. 4. The black areas de-
note the basin of attraction for the stabilized periodic state.

Figure 4: Experimental basins of attraction for linear cou-
pling in black. Periodic orbit in white.

It consists of a narrow annulus surrounding the UPO which
is indicated by the white line. For initial conditions out-
side the basin of attraction the time series shows a behavior
as given in Fig. 3(b). Small basins of attraction make the
UTDFC method unsuitable for practical applications.

5.2. Phase coupling

In order to extent the basins of attraction a different type
of coupling was applied. A possible reason for failing con-
trol might have been the overshooting of the feedback sig-
nal when the control is switched on and high-amplitude
transients occur. To suppress such undesired feedback os-
cillations the control signal has to be limited to a certain
level. Obviously a sigmoidal control function could do this
job much better. So we replaced the linear control func-
tion by a hyperbolic tangent, f (x) = tanh(βx) with β ≫ 1,
which was easily implemented in our electronic circuits by
means of a operational amplifier acting as a comparator.
Now the coupling function f (x) just probes the sign of x(t),
which means that the coupling in eq.(3) appears through
the phase of of the variable only, without any dependence
on the amplitude.

We carry out the same experiment as in the case of linear
coupling. The parameters were fixed to ε = −0.1, k = 0.10,
and λc = 0.051. In Fig. 5 we have shown the time series
for x(t) and w(t) for the same initial conditions as in Fig.
3, i.e. (a) close to the orbit (x0, y0,w0) = (0.6, 0, 0) and
(b) far from the UPO (x0, y0,w0) = (0.1, 0, 0). The obvious
difference to Fig. 3 is that for both conditions the UPO is
stabilized and the controller variable vanishes. Comparing
the time series of Fig. 5 it is evident that the transient time
is much longer for initial condition far away from the UPO
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Figure 5: Phase coupling: Timeseries of the observed vari-
able x(t) (line) and the control loop variable w(t) (dashed)
for fixed parameters but different initial conditions. The pa-
rameters are ε = −0.1, k = 0.10 and λc = 0.051. (a) Initial
conditions close to UPO (x0, y0,w0) = (0.6, 0, 0). (b) Initial
conditions close to origin (x0, y0,w0) = (0.1, 0, 0)

(b) than for initial conditions close to the UPO (a).
We found that phase coupling results in a dramatic in-

crease of the basin of attraction , c.f. Fig. 6. Now, even
close to the limiting bifurcation the basin of attraction in-
cludes the whole area inside the UPO (except for the very
centre).

6. Conclusions

We have shown for the first time by experimental means
that the concept of an unstable time-delayed feedback con-
troller is able to overcome the odd number limitation.
When applying a linear coupling f (x) = x successful con-
trol was obtained only for a small range of initial condi-
tions close to the target orbit. This experimental results are
in good agreement with numerical results.

For many technical application it is difficult or even im-
possible to set initial conditions precisely. So the size of
the basin of attraction of the target orbit is of similar im-
portance as stability considerations. The phase coupling,
which can technically be implemented in a rather simple
way, is able to change the size of the basin of attraction
dramatically. Apart from the origin the basin of attraction
now covers the full area inside the orbit. With this type
of coupling the unstable time-delayed feedback controller
becomes suitable for various practical applications.

Figure 6: Experimental basins of attraction for phase cou-
pling in black. Periodic orbit in white.
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